| Step | Hyp | Ref
| Expression |
| 1 | | 19.26 1870 |
. . 3
⊢
(∀𝑥(𝑥 = 𝑧 ∧ 𝑥 = 𝑤) ↔ (∀𝑥 𝑥 = 𝑧 ∧ ∀𝑥 𝑥 = 𝑤)) |
| 2 | | elequ1 2115 |
. . . . . . . . 9
⊢ (𝑥 = 𝑦 → (𝑥 ∈ 𝑥 ↔ 𝑦 ∈ 𝑥)) |
| 3 | | elequ2 2123 |
. . . . . . . . 9
⊢ (𝑥 = 𝑦 → (𝑦 ∈ 𝑥 ↔ 𝑦 ∈ 𝑦)) |
| 4 | 2, 3 | bitrd 279 |
. . . . . . . 8
⊢ (𝑥 = 𝑦 → (𝑥 ∈ 𝑥 ↔ 𝑦 ∈ 𝑦)) |
| 5 | 4 | adantl 481 |
. . . . . . 7
⊢ ((¬
∀𝑥 𝑥 = 𝑦 ∧ 𝑥 = 𝑦) → (𝑥 ∈ 𝑥 ↔ 𝑦 ∈ 𝑦)) |
| 6 | | ax-5 1910 |
. . . . . . . . . 10
⊢ (𝑣 ∈ 𝑣 → ∀𝑥 𝑣 ∈ 𝑣) |
| 7 | | ax-5 1910 |
. . . . . . . . . 10
⊢ (𝑦 ∈ 𝑦 → ∀𝑣 𝑦 ∈ 𝑦) |
| 8 | | elequ1 2115 |
. . . . . . . . . . 11
⊢ (𝑣 = 𝑦 → (𝑣 ∈ 𝑣 ↔ 𝑦 ∈ 𝑣)) |
| 9 | | elequ2 2123 |
. . . . . . . . . . 11
⊢ (𝑣 = 𝑦 → (𝑦 ∈ 𝑣 ↔ 𝑦 ∈ 𝑦)) |
| 10 | 8, 9 | bitrd 279 |
. . . . . . . . . 10
⊢ (𝑣 = 𝑦 → (𝑣 ∈ 𝑣 ↔ 𝑦 ∈ 𝑦)) |
| 11 | 6, 7, 10 | dvelimf-o 38930 |
. . . . . . . . 9
⊢ (¬
∀𝑥 𝑥 = 𝑦 → (𝑦 ∈ 𝑦 → ∀𝑥 𝑦 ∈ 𝑦)) |
| 12 | 4 | biimprcd 250 |
. . . . . . . . . 10
⊢ (𝑦 ∈ 𝑦 → (𝑥 = 𝑦 → 𝑥 ∈ 𝑥)) |
| 13 | 12 | alimi 1811 |
. . . . . . . . 9
⊢
(∀𝑥 𝑦 ∈ 𝑦 → ∀𝑥(𝑥 = 𝑦 → 𝑥 ∈ 𝑥)) |
| 14 | 11, 13 | syl6 35 |
. . . . . . . 8
⊢ (¬
∀𝑥 𝑥 = 𝑦 → (𝑦 ∈ 𝑦 → ∀𝑥(𝑥 = 𝑦 → 𝑥 ∈ 𝑥))) |
| 15 | 14 | adantr 480 |
. . . . . . 7
⊢ ((¬
∀𝑥 𝑥 = 𝑦 ∧ 𝑥 = 𝑦) → (𝑦 ∈ 𝑦 → ∀𝑥(𝑥 = 𝑦 → 𝑥 ∈ 𝑥))) |
| 16 | 5, 15 | sylbid 240 |
. . . . . 6
⊢ ((¬
∀𝑥 𝑥 = 𝑦 ∧ 𝑥 = 𝑦) → (𝑥 ∈ 𝑥 → ∀𝑥(𝑥 = 𝑦 → 𝑥 ∈ 𝑥))) |
| 17 | 16 | adantl 481 |
. . . . 5
⊢
((∀𝑥(𝑥 = 𝑧 ∧ 𝑥 = 𝑤) ∧ (¬ ∀𝑥 𝑥 = 𝑦 ∧ 𝑥 = 𝑦)) → (𝑥 ∈ 𝑥 → ∀𝑥(𝑥 = 𝑦 → 𝑥 ∈ 𝑥))) |
| 18 | | elequ1 2115 |
. . . . . . . . 9
⊢ (𝑥 = 𝑧 → (𝑥 ∈ 𝑥 ↔ 𝑧 ∈ 𝑥)) |
| 19 | | elequ2 2123 |
. . . . . . . . 9
⊢ (𝑥 = 𝑤 → (𝑧 ∈ 𝑥 ↔ 𝑧 ∈ 𝑤)) |
| 20 | 18, 19 | sylan9bb 509 |
. . . . . . . 8
⊢ ((𝑥 = 𝑧 ∧ 𝑥 = 𝑤) → (𝑥 ∈ 𝑥 ↔ 𝑧 ∈ 𝑤)) |
| 21 | 20 | sps-o 38909 |
. . . . . . 7
⊢
(∀𝑥(𝑥 = 𝑧 ∧ 𝑥 = 𝑤) → (𝑥 ∈ 𝑥 ↔ 𝑧 ∈ 𝑤)) |
| 22 | | nfa1-o 38916 |
. . . . . . . 8
⊢
Ⅎ𝑥∀𝑥(𝑥 = 𝑧 ∧ 𝑥 = 𝑤) |
| 23 | 21 | imbi2d 340 |
. . . . . . . 8
⊢
(∀𝑥(𝑥 = 𝑧 ∧ 𝑥 = 𝑤) → ((𝑥 = 𝑦 → 𝑥 ∈ 𝑥) ↔ (𝑥 = 𝑦 → 𝑧 ∈ 𝑤))) |
| 24 | 22, 23 | albid 2222 |
. . . . . . 7
⊢
(∀𝑥(𝑥 = 𝑧 ∧ 𝑥 = 𝑤) → (∀𝑥(𝑥 = 𝑦 → 𝑥 ∈ 𝑥) ↔ ∀𝑥(𝑥 = 𝑦 → 𝑧 ∈ 𝑤))) |
| 25 | 21, 24 | imbi12d 344 |
. . . . . 6
⊢
(∀𝑥(𝑥 = 𝑧 ∧ 𝑥 = 𝑤) → ((𝑥 ∈ 𝑥 → ∀𝑥(𝑥 = 𝑦 → 𝑥 ∈ 𝑥)) ↔ (𝑧 ∈ 𝑤 → ∀𝑥(𝑥 = 𝑦 → 𝑧 ∈ 𝑤)))) |
| 26 | 25 | adantr 480 |
. . . . 5
⊢
((∀𝑥(𝑥 = 𝑧 ∧ 𝑥 = 𝑤) ∧ (¬ ∀𝑥 𝑥 = 𝑦 ∧ 𝑥 = 𝑦)) → ((𝑥 ∈ 𝑥 → ∀𝑥(𝑥 = 𝑦 → 𝑥 ∈ 𝑥)) ↔ (𝑧 ∈ 𝑤 → ∀𝑥(𝑥 = 𝑦 → 𝑧 ∈ 𝑤)))) |
| 27 | 17, 26 | mpbid 232 |
. . . 4
⊢
((∀𝑥(𝑥 = 𝑧 ∧ 𝑥 = 𝑤) ∧ (¬ ∀𝑥 𝑥 = 𝑦 ∧ 𝑥 = 𝑦)) → (𝑧 ∈ 𝑤 → ∀𝑥(𝑥 = 𝑦 → 𝑧 ∈ 𝑤))) |
| 28 | 27 | exp32 420 |
. . 3
⊢
(∀𝑥(𝑥 = 𝑧 ∧ 𝑥 = 𝑤) → (¬ ∀𝑥 𝑥 = 𝑦 → (𝑥 = 𝑦 → (𝑧 ∈ 𝑤 → ∀𝑥(𝑥 = 𝑦 → 𝑧 ∈ 𝑤))))) |
| 29 | 1, 28 | sylbir 235 |
. 2
⊢
((∀𝑥 𝑥 = 𝑧 ∧ ∀𝑥 𝑥 = 𝑤) → (¬ ∀𝑥 𝑥 = 𝑦 → (𝑥 = 𝑦 → (𝑧 ∈ 𝑤 → ∀𝑥(𝑥 = 𝑦 → 𝑧 ∈ 𝑤))))) |
| 30 | | elequ1 2115 |
. . . . . . 7
⊢ (𝑥 = 𝑦 → (𝑥 ∈ 𝑤 ↔ 𝑦 ∈ 𝑤)) |
| 31 | 30 | ad2antll 729 |
. . . . . 6
⊢ ((¬
∀𝑥 𝑥 = 𝑤 ∧ (¬ ∀𝑥 𝑥 = 𝑦 ∧ 𝑥 = 𝑦)) → (𝑥 ∈ 𝑤 ↔ 𝑦 ∈ 𝑤)) |
| 32 | | ax-c14 38892 |
. . . . . . . . 9
⊢ (¬
∀𝑥 𝑥 = 𝑦 → (¬ ∀𝑥 𝑥 = 𝑤 → (𝑦 ∈ 𝑤 → ∀𝑥 𝑦 ∈ 𝑤))) |
| 33 | 32 | impcom 407 |
. . . . . . . 8
⊢ ((¬
∀𝑥 𝑥 = 𝑤 ∧ ¬ ∀𝑥 𝑥 = 𝑦) → (𝑦 ∈ 𝑤 → ∀𝑥 𝑦 ∈ 𝑤)) |
| 34 | 33 | adantrr 717 |
. . . . . . 7
⊢ ((¬
∀𝑥 𝑥 = 𝑤 ∧ (¬ ∀𝑥 𝑥 = 𝑦 ∧ 𝑥 = 𝑦)) → (𝑦 ∈ 𝑤 → ∀𝑥 𝑦 ∈ 𝑤)) |
| 35 | 30 | biimprcd 250 |
. . . . . . . 8
⊢ (𝑦 ∈ 𝑤 → (𝑥 = 𝑦 → 𝑥 ∈ 𝑤)) |
| 36 | 35 | alimi 1811 |
. . . . . . 7
⊢
(∀𝑥 𝑦 ∈ 𝑤 → ∀𝑥(𝑥 = 𝑦 → 𝑥 ∈ 𝑤)) |
| 37 | 34, 36 | syl6 35 |
. . . . . 6
⊢ ((¬
∀𝑥 𝑥 = 𝑤 ∧ (¬ ∀𝑥 𝑥 = 𝑦 ∧ 𝑥 = 𝑦)) → (𝑦 ∈ 𝑤 → ∀𝑥(𝑥 = 𝑦 → 𝑥 ∈ 𝑤))) |
| 38 | 31, 37 | sylbid 240 |
. . . . 5
⊢ ((¬
∀𝑥 𝑥 = 𝑤 ∧ (¬ ∀𝑥 𝑥 = 𝑦 ∧ 𝑥 = 𝑦)) → (𝑥 ∈ 𝑤 → ∀𝑥(𝑥 = 𝑦 → 𝑥 ∈ 𝑤))) |
| 39 | 38 | adantll 714 |
. . . 4
⊢
(((∀𝑥 𝑥 = 𝑧 ∧ ¬ ∀𝑥 𝑥 = 𝑤) ∧ (¬ ∀𝑥 𝑥 = 𝑦 ∧ 𝑥 = 𝑦)) → (𝑥 ∈ 𝑤 → ∀𝑥(𝑥 = 𝑦 → 𝑥 ∈ 𝑤))) |
| 40 | | elequ1 2115 |
. . . . . . 7
⊢ (𝑥 = 𝑧 → (𝑥 ∈ 𝑤 ↔ 𝑧 ∈ 𝑤)) |
| 41 | 40 | sps-o 38909 |
. . . . . 6
⊢
(∀𝑥 𝑥 = 𝑧 → (𝑥 ∈ 𝑤 ↔ 𝑧 ∈ 𝑤)) |
| 42 | 41 | imbi2d 340 |
. . . . . . 7
⊢
(∀𝑥 𝑥 = 𝑧 → ((𝑥 = 𝑦 → 𝑥 ∈ 𝑤) ↔ (𝑥 = 𝑦 → 𝑧 ∈ 𝑤))) |
| 43 | 42 | dral2-o 38931 |
. . . . . 6
⊢
(∀𝑥 𝑥 = 𝑧 → (∀𝑥(𝑥 = 𝑦 → 𝑥 ∈ 𝑤) ↔ ∀𝑥(𝑥 = 𝑦 → 𝑧 ∈ 𝑤))) |
| 44 | 41, 43 | imbi12d 344 |
. . . . 5
⊢
(∀𝑥 𝑥 = 𝑧 → ((𝑥 ∈ 𝑤 → ∀𝑥(𝑥 = 𝑦 → 𝑥 ∈ 𝑤)) ↔ (𝑧 ∈ 𝑤 → ∀𝑥(𝑥 = 𝑦 → 𝑧 ∈ 𝑤)))) |
| 45 | 44 | ad2antrr 726 |
. . . 4
⊢
(((∀𝑥 𝑥 = 𝑧 ∧ ¬ ∀𝑥 𝑥 = 𝑤) ∧ (¬ ∀𝑥 𝑥 = 𝑦 ∧ 𝑥 = 𝑦)) → ((𝑥 ∈ 𝑤 → ∀𝑥(𝑥 = 𝑦 → 𝑥 ∈ 𝑤)) ↔ (𝑧 ∈ 𝑤 → ∀𝑥(𝑥 = 𝑦 → 𝑧 ∈ 𝑤)))) |
| 46 | 39, 45 | mpbid 232 |
. . 3
⊢
(((∀𝑥 𝑥 = 𝑧 ∧ ¬ ∀𝑥 𝑥 = 𝑤) ∧ (¬ ∀𝑥 𝑥 = 𝑦 ∧ 𝑥 = 𝑦)) → (𝑧 ∈ 𝑤 → ∀𝑥(𝑥 = 𝑦 → 𝑧 ∈ 𝑤))) |
| 47 | 46 | exp32 420 |
. 2
⊢
((∀𝑥 𝑥 = 𝑧 ∧ ¬ ∀𝑥 𝑥 = 𝑤) → (¬ ∀𝑥 𝑥 = 𝑦 → (𝑥 = 𝑦 → (𝑧 ∈ 𝑤 → ∀𝑥(𝑥 = 𝑦 → 𝑧 ∈ 𝑤))))) |
| 48 | | elequ2 2123 |
. . . . . . 7
⊢ (𝑥 = 𝑦 → (𝑧 ∈ 𝑥 ↔ 𝑧 ∈ 𝑦)) |
| 49 | 48 | ad2antll 729 |
. . . . . 6
⊢ ((¬
∀𝑥 𝑥 = 𝑧 ∧ (¬ ∀𝑥 𝑥 = 𝑦 ∧ 𝑥 = 𝑦)) → (𝑧 ∈ 𝑥 ↔ 𝑧 ∈ 𝑦)) |
| 50 | | ax-c14 38892 |
. . . . . . . . 9
⊢ (¬
∀𝑥 𝑥 = 𝑧 → (¬ ∀𝑥 𝑥 = 𝑦 → (𝑧 ∈ 𝑦 → ∀𝑥 𝑧 ∈ 𝑦))) |
| 51 | 50 | imp 406 |
. . . . . . . 8
⊢ ((¬
∀𝑥 𝑥 = 𝑧 ∧ ¬ ∀𝑥 𝑥 = 𝑦) → (𝑧 ∈ 𝑦 → ∀𝑥 𝑧 ∈ 𝑦)) |
| 52 | 51 | adantrr 717 |
. . . . . . 7
⊢ ((¬
∀𝑥 𝑥 = 𝑧 ∧ (¬ ∀𝑥 𝑥 = 𝑦 ∧ 𝑥 = 𝑦)) → (𝑧 ∈ 𝑦 → ∀𝑥 𝑧 ∈ 𝑦)) |
| 53 | 48 | biimprcd 250 |
. . . . . . . 8
⊢ (𝑧 ∈ 𝑦 → (𝑥 = 𝑦 → 𝑧 ∈ 𝑥)) |
| 54 | 53 | alimi 1811 |
. . . . . . 7
⊢
(∀𝑥 𝑧 ∈ 𝑦 → ∀𝑥(𝑥 = 𝑦 → 𝑧 ∈ 𝑥)) |
| 55 | 52, 54 | syl6 35 |
. . . . . 6
⊢ ((¬
∀𝑥 𝑥 = 𝑧 ∧ (¬ ∀𝑥 𝑥 = 𝑦 ∧ 𝑥 = 𝑦)) → (𝑧 ∈ 𝑦 → ∀𝑥(𝑥 = 𝑦 → 𝑧 ∈ 𝑥))) |
| 56 | 49, 55 | sylbid 240 |
. . . . 5
⊢ ((¬
∀𝑥 𝑥 = 𝑧 ∧ (¬ ∀𝑥 𝑥 = 𝑦 ∧ 𝑥 = 𝑦)) → (𝑧 ∈ 𝑥 → ∀𝑥(𝑥 = 𝑦 → 𝑧 ∈ 𝑥))) |
| 57 | 56 | adantlr 715 |
. . . 4
⊢ (((¬
∀𝑥 𝑥 = 𝑧 ∧ ∀𝑥 𝑥 = 𝑤) ∧ (¬ ∀𝑥 𝑥 = 𝑦 ∧ 𝑥 = 𝑦)) → (𝑧 ∈ 𝑥 → ∀𝑥(𝑥 = 𝑦 → 𝑧 ∈ 𝑥))) |
| 58 | 19 | sps-o 38909 |
. . . . . 6
⊢
(∀𝑥 𝑥 = 𝑤 → (𝑧 ∈ 𝑥 ↔ 𝑧 ∈ 𝑤)) |
| 59 | 58 | imbi2d 340 |
. . . . . . 7
⊢
(∀𝑥 𝑥 = 𝑤 → ((𝑥 = 𝑦 → 𝑧 ∈ 𝑥) ↔ (𝑥 = 𝑦 → 𝑧 ∈ 𝑤))) |
| 60 | 59 | dral2-o 38931 |
. . . . . 6
⊢
(∀𝑥 𝑥 = 𝑤 → (∀𝑥(𝑥 = 𝑦 → 𝑧 ∈ 𝑥) ↔ ∀𝑥(𝑥 = 𝑦 → 𝑧 ∈ 𝑤))) |
| 61 | 58, 60 | imbi12d 344 |
. . . . 5
⊢
(∀𝑥 𝑥 = 𝑤 → ((𝑧 ∈ 𝑥 → ∀𝑥(𝑥 = 𝑦 → 𝑧 ∈ 𝑥)) ↔ (𝑧 ∈ 𝑤 → ∀𝑥(𝑥 = 𝑦 → 𝑧 ∈ 𝑤)))) |
| 62 | 61 | ad2antlr 727 |
. . . 4
⊢ (((¬
∀𝑥 𝑥 = 𝑧 ∧ ∀𝑥 𝑥 = 𝑤) ∧ (¬ ∀𝑥 𝑥 = 𝑦 ∧ 𝑥 = 𝑦)) → ((𝑧 ∈ 𝑥 → ∀𝑥(𝑥 = 𝑦 → 𝑧 ∈ 𝑥)) ↔ (𝑧 ∈ 𝑤 → ∀𝑥(𝑥 = 𝑦 → 𝑧 ∈ 𝑤)))) |
| 63 | 57, 62 | mpbid 232 |
. . 3
⊢ (((¬
∀𝑥 𝑥 = 𝑧 ∧ ∀𝑥 𝑥 = 𝑤) ∧ (¬ ∀𝑥 𝑥 = 𝑦 ∧ 𝑥 = 𝑦)) → (𝑧 ∈ 𝑤 → ∀𝑥(𝑥 = 𝑦 → 𝑧 ∈ 𝑤))) |
| 64 | 63 | exp32 420 |
. 2
⊢ ((¬
∀𝑥 𝑥 = 𝑧 ∧ ∀𝑥 𝑥 = 𝑤) → (¬ ∀𝑥 𝑥 = 𝑦 → (𝑥 = 𝑦 → (𝑧 ∈ 𝑤 → ∀𝑥(𝑥 = 𝑦 → 𝑧 ∈ 𝑤))))) |
| 65 | | ax6ev 1969 |
. . . . 5
⊢
∃𝑢 𝑢 = 𝑤 |
| 66 | | ax6ev 1969 |
. . . . . . 7
⊢
∃𝑣 𝑣 = 𝑧 |
| 67 | | ax-1 6 |
. . . . . . . . . . 11
⊢ (𝑣 ∈ 𝑢 → (𝑥 = 𝑦 → 𝑣 ∈ 𝑢)) |
| 68 | 67 | alrimiv 1927 |
. . . . . . . . . 10
⊢ (𝑣 ∈ 𝑢 → ∀𝑥(𝑥 = 𝑦 → 𝑣 ∈ 𝑢)) |
| 69 | | elequ1 2115 |
. . . . . . . . . . . . 13
⊢ (𝑣 = 𝑧 → (𝑣 ∈ 𝑢 ↔ 𝑧 ∈ 𝑢)) |
| 70 | | elequ2 2123 |
. . . . . . . . . . . . 13
⊢ (𝑢 = 𝑤 → (𝑧 ∈ 𝑢 ↔ 𝑧 ∈ 𝑤)) |
| 71 | 69, 70 | sylan9bb 509 |
. . . . . . . . . . . 12
⊢ ((𝑣 = 𝑧 ∧ 𝑢 = 𝑤) → (𝑣 ∈ 𝑢 ↔ 𝑧 ∈ 𝑤)) |
| 72 | 71 | adantl 481 |
. . . . . . . . . . 11
⊢ (((¬
∀𝑥 𝑥 = 𝑧 ∧ ¬ ∀𝑥 𝑥 = 𝑤) ∧ (𝑣 = 𝑧 ∧ 𝑢 = 𝑤)) → (𝑣 ∈ 𝑢 ↔ 𝑧 ∈ 𝑤)) |
| 73 | | dveeq2-o 38934 |
. . . . . . . . . . . . . . 15
⊢ (¬
∀𝑥 𝑥 = 𝑧 → (𝑣 = 𝑧 → ∀𝑥 𝑣 = 𝑧)) |
| 74 | | dveeq2-o 38934 |
. . . . . . . . . . . . . . 15
⊢ (¬
∀𝑥 𝑥 = 𝑤 → (𝑢 = 𝑤 → ∀𝑥 𝑢 = 𝑤)) |
| 75 | 73, 74 | im2anan9 620 |
. . . . . . . . . . . . . 14
⊢ ((¬
∀𝑥 𝑥 = 𝑧 ∧ ¬ ∀𝑥 𝑥 = 𝑤) → ((𝑣 = 𝑧 ∧ 𝑢 = 𝑤) → (∀𝑥 𝑣 = 𝑧 ∧ ∀𝑥 𝑢 = 𝑤))) |
| 76 | 75 | imp 406 |
. . . . . . . . . . . . 13
⊢ (((¬
∀𝑥 𝑥 = 𝑧 ∧ ¬ ∀𝑥 𝑥 = 𝑤) ∧ (𝑣 = 𝑧 ∧ 𝑢 = 𝑤)) → (∀𝑥 𝑣 = 𝑧 ∧ ∀𝑥 𝑢 = 𝑤)) |
| 77 | | 19.26 1870 |
. . . . . . . . . . . . 13
⊢
(∀𝑥(𝑣 = 𝑧 ∧ 𝑢 = 𝑤) ↔ (∀𝑥 𝑣 = 𝑧 ∧ ∀𝑥 𝑢 = 𝑤)) |
| 78 | 76, 77 | sylibr 234 |
. . . . . . . . . . . 12
⊢ (((¬
∀𝑥 𝑥 = 𝑧 ∧ ¬ ∀𝑥 𝑥 = 𝑤) ∧ (𝑣 = 𝑧 ∧ 𝑢 = 𝑤)) → ∀𝑥(𝑣 = 𝑧 ∧ 𝑢 = 𝑤)) |
| 79 | | nfa1-o 38916 |
. . . . . . . . . . . . 13
⊢
Ⅎ𝑥∀𝑥(𝑣 = 𝑧 ∧ 𝑢 = 𝑤) |
| 80 | 71 | sps-o 38909 |
. . . . . . . . . . . . . 14
⊢
(∀𝑥(𝑣 = 𝑧 ∧ 𝑢 = 𝑤) → (𝑣 ∈ 𝑢 ↔ 𝑧 ∈ 𝑤)) |
| 81 | 80 | imbi2d 340 |
. . . . . . . . . . . . 13
⊢
(∀𝑥(𝑣 = 𝑧 ∧ 𝑢 = 𝑤) → ((𝑥 = 𝑦 → 𝑣 ∈ 𝑢) ↔ (𝑥 = 𝑦 → 𝑧 ∈ 𝑤))) |
| 82 | 79, 81 | albid 2222 |
. . . . . . . . . . . 12
⊢
(∀𝑥(𝑣 = 𝑧 ∧ 𝑢 = 𝑤) → (∀𝑥(𝑥 = 𝑦 → 𝑣 ∈ 𝑢) ↔ ∀𝑥(𝑥 = 𝑦 → 𝑧 ∈ 𝑤))) |
| 83 | 78, 82 | syl 17 |
. . . . . . . . . . 11
⊢ (((¬
∀𝑥 𝑥 = 𝑧 ∧ ¬ ∀𝑥 𝑥 = 𝑤) ∧ (𝑣 = 𝑧 ∧ 𝑢 = 𝑤)) → (∀𝑥(𝑥 = 𝑦 → 𝑣 ∈ 𝑢) ↔ ∀𝑥(𝑥 = 𝑦 → 𝑧 ∈ 𝑤))) |
| 84 | 72, 83 | imbi12d 344 |
. . . . . . . . . 10
⊢ (((¬
∀𝑥 𝑥 = 𝑧 ∧ ¬ ∀𝑥 𝑥 = 𝑤) ∧ (𝑣 = 𝑧 ∧ 𝑢 = 𝑤)) → ((𝑣 ∈ 𝑢 → ∀𝑥(𝑥 = 𝑦 → 𝑣 ∈ 𝑢)) ↔ (𝑧 ∈ 𝑤 → ∀𝑥(𝑥 = 𝑦 → 𝑧 ∈ 𝑤)))) |
| 85 | 68, 84 | mpbii 233 |
. . . . . . . . 9
⊢ (((¬
∀𝑥 𝑥 = 𝑧 ∧ ¬ ∀𝑥 𝑥 = 𝑤) ∧ (𝑣 = 𝑧 ∧ 𝑢 = 𝑤)) → (𝑧 ∈ 𝑤 → ∀𝑥(𝑥 = 𝑦 → 𝑧 ∈ 𝑤))) |
| 86 | 85 | exp32 420 |
. . . . . . . 8
⊢ ((¬
∀𝑥 𝑥 = 𝑧 ∧ ¬ ∀𝑥 𝑥 = 𝑤) → (𝑣 = 𝑧 → (𝑢 = 𝑤 → (𝑧 ∈ 𝑤 → ∀𝑥(𝑥 = 𝑦 → 𝑧 ∈ 𝑤))))) |
| 87 | 86 | exlimdv 1933 |
. . . . . . 7
⊢ ((¬
∀𝑥 𝑥 = 𝑧 ∧ ¬ ∀𝑥 𝑥 = 𝑤) → (∃𝑣 𝑣 = 𝑧 → (𝑢 = 𝑤 → (𝑧 ∈ 𝑤 → ∀𝑥(𝑥 = 𝑦 → 𝑧 ∈ 𝑤))))) |
| 88 | 66, 87 | mpi 20 |
. . . . . 6
⊢ ((¬
∀𝑥 𝑥 = 𝑧 ∧ ¬ ∀𝑥 𝑥 = 𝑤) → (𝑢 = 𝑤 → (𝑧 ∈ 𝑤 → ∀𝑥(𝑥 = 𝑦 → 𝑧 ∈ 𝑤)))) |
| 89 | 88 | exlimdv 1933 |
. . . . 5
⊢ ((¬
∀𝑥 𝑥 = 𝑧 ∧ ¬ ∀𝑥 𝑥 = 𝑤) → (∃𝑢 𝑢 = 𝑤 → (𝑧 ∈ 𝑤 → ∀𝑥(𝑥 = 𝑦 → 𝑧 ∈ 𝑤)))) |
| 90 | 65, 89 | mpi 20 |
. . . 4
⊢ ((¬
∀𝑥 𝑥 = 𝑧 ∧ ¬ ∀𝑥 𝑥 = 𝑤) → (𝑧 ∈ 𝑤 → ∀𝑥(𝑥 = 𝑦 → 𝑧 ∈ 𝑤))) |
| 91 | 90 | a1d 25 |
. . 3
⊢ ((¬
∀𝑥 𝑥 = 𝑧 ∧ ¬ ∀𝑥 𝑥 = 𝑤) → (𝑥 = 𝑦 → (𝑧 ∈ 𝑤 → ∀𝑥(𝑥 = 𝑦 → 𝑧 ∈ 𝑤)))) |
| 92 | 91 | a1d 25 |
. 2
⊢ ((¬
∀𝑥 𝑥 = 𝑧 ∧ ¬ ∀𝑥 𝑥 = 𝑤) → (¬ ∀𝑥 𝑥 = 𝑦 → (𝑥 = 𝑦 → (𝑧 ∈ 𝑤 → ∀𝑥(𝑥 = 𝑦 → 𝑧 ∈ 𝑤))))) |
| 93 | 29, 47, 64, 92 | 4cases 1041 |
1
⊢ (¬
∀𝑥 𝑥 = 𝑦 → (𝑥 = 𝑦 → (𝑧 ∈ 𝑤 → ∀𝑥(𝑥 = 𝑦 → 𝑧 ∈ 𝑤)))) |