Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  axc11-o Structured version   Visualization version   GIF version

Theorem axc11-o 36965
Description: Show that ax-c11 36901 can be derived from ax-c11n 36902 and ax-12 2171. An open problem is whether this theorem can be derived from ax-c11n 36902 and the others when ax-12 2171 is replaced with ax-c15 36903 or ax12v 2172. See Theorems axc11nfromc11 36940 for the rederivation of ax-c11n 36902 from axc11 2430.

Normally, axc11 2430 should be used rather than ax-c11 36901 or axc11-o 36965, except by theorems specifically studying the latter's properties. (Contributed by NM, 16-May-2008.) (Proof modification is discouraged.) (New usage is discouraged.)

Assertion
Ref Expression
axc11-o (∀𝑥 𝑥 = 𝑦 → (∀𝑥𝜑 → ∀𝑦𝜑))

Proof of Theorem axc11-o
StepHypRef Expression
1 ax-c11n 36902 . 2 (∀𝑥 𝑥 = 𝑦 → ∀𝑦 𝑦 = 𝑥)
2 ax12 2423 . . . 4 (𝑦 = 𝑥 → (∀𝑥𝜑 → ∀𝑦(𝑦 = 𝑥𝜑)))
32equcoms 2023 . . 3 (𝑥 = 𝑦 → (∀𝑥𝜑 → ∀𝑦(𝑦 = 𝑥𝜑)))
43sps-o 36922 . 2 (∀𝑥 𝑥 = 𝑦 → (∀𝑥𝜑 → ∀𝑦(𝑦 = 𝑥𝜑)))
5 pm2.27 42 . . 3 (𝑦 = 𝑥 → ((𝑦 = 𝑥𝜑) → 𝜑))
65al2imi 1818 . 2 (∀𝑦 𝑦 = 𝑥 → (∀𝑦(𝑦 = 𝑥𝜑) → ∀𝑦𝜑))
71, 4, 6sylsyld 61 1 (∀𝑥 𝑥 = 𝑦 → (∀𝑥𝜑 → ∀𝑦𝜑))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wal 1537
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-10 2137  ax-12 2171  ax-13 2372  ax-c5 36897  ax-c11n 36902
This theorem depends on definitions:  df-bi 206  df-an 397  df-ex 1783  df-nf 1787
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator