Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  axc11-o Structured version   Visualization version   GIF version

Theorem axc11-o 34910
Description: Show that ax-c11 34846 can be derived from ax-c11n 34847 and ax-12 2211. An open problem is whether this theorem can be derived from ax-c11n 34847 and the others when ax-12 2211 is replaced with ax-c15 34848 or ax12v 2212. See theorem axc11nfromc11 34885 for the rederivation of ax-c11n 34847 from axc11 2410.

Normally, axc11 2410 should be used rather than ax-c11 34846 or axc11-o 34910, except by theorems specifically studying the latter's properties. (Contributed by NM, 16-May-2008.) (Proof modification is discouraged.) (New usage is discouraged.)

Assertion
Ref Expression
axc11-o (∀𝑥 𝑥 = 𝑦 → (∀𝑥𝜑 → ∀𝑦𝜑))

Proof of Theorem axc11-o
StepHypRef Expression
1 ax-c11n 34847 . 2 (∀𝑥 𝑥 = 𝑦 → ∀𝑦 𝑦 = 𝑥)
2 ax12 2404 . . . 4 (𝑦 = 𝑥 → (∀𝑥𝜑 → ∀𝑦(𝑦 = 𝑥𝜑)))
32equcoms 2117 . . 3 (𝑥 = 𝑦 → (∀𝑥𝜑 → ∀𝑦(𝑦 = 𝑥𝜑)))
43sps-o 34867 . 2 (∀𝑥 𝑥 = 𝑦 → (∀𝑥𝜑 → ∀𝑦(𝑦 = 𝑥𝜑)))
5 pm2.27 42 . . 3 (𝑦 = 𝑥 → ((𝑦 = 𝑥𝜑) → 𝜑))
65al2imi 1910 . 2 (∀𝑦 𝑦 = 𝑥 → (∀𝑦(𝑦 = 𝑥𝜑) → ∀𝑦𝜑))
71, 4, 6sylsyld 61 1 (∀𝑥 𝑥 = 𝑦 → (∀𝑥𝜑 → ∀𝑦𝜑))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wal 1650
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1890  ax-4 1904  ax-5 2005  ax-6 2070  ax-7 2105  ax-10 2183  ax-12 2211  ax-13 2352  ax-c5 34842  ax-c11n 34847
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 874  df-ex 1875  df-nf 1879
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator