Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > axc11-o | Structured version Visualization version GIF version |
Description: Show that ax-c11 36901 can be derived from ax-c11n 36902 and ax-12 2171. An open
problem is whether this theorem can be derived from ax-c11n 36902 and the
others when ax-12 2171 is replaced with ax-c15 36903 or ax12v 2172. See Theorems
axc11nfromc11 36940 for the rederivation of ax-c11n 36902 from axc11 2430.
Normally, axc11 2430 should be used rather than ax-c11 36901 or axc11-o 36965, except by theorems specifically studying the latter's properties. (Contributed by NM, 16-May-2008.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
axc11-o | ⊢ (∀𝑥 𝑥 = 𝑦 → (∀𝑥𝜑 → ∀𝑦𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-c11n 36902 | . 2 ⊢ (∀𝑥 𝑥 = 𝑦 → ∀𝑦 𝑦 = 𝑥) | |
2 | ax12 2423 | . . . 4 ⊢ (𝑦 = 𝑥 → (∀𝑥𝜑 → ∀𝑦(𝑦 = 𝑥 → 𝜑))) | |
3 | 2 | equcoms 2023 | . . 3 ⊢ (𝑥 = 𝑦 → (∀𝑥𝜑 → ∀𝑦(𝑦 = 𝑥 → 𝜑))) |
4 | 3 | sps-o 36922 | . 2 ⊢ (∀𝑥 𝑥 = 𝑦 → (∀𝑥𝜑 → ∀𝑦(𝑦 = 𝑥 → 𝜑))) |
5 | pm2.27 42 | . . 3 ⊢ (𝑦 = 𝑥 → ((𝑦 = 𝑥 → 𝜑) → 𝜑)) | |
6 | 5 | al2imi 1818 | . 2 ⊢ (∀𝑦 𝑦 = 𝑥 → (∀𝑦(𝑦 = 𝑥 → 𝜑) → ∀𝑦𝜑)) |
7 | 1, 4, 6 | sylsyld 61 | 1 ⊢ (∀𝑥 𝑥 = 𝑦 → (∀𝑥𝜑 → ∀𝑦𝜑)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∀wal 1537 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-10 2137 ax-12 2171 ax-13 2372 ax-c5 36897 ax-c11n 36902 |
This theorem depends on definitions: df-bi 206 df-an 397 df-ex 1783 df-nf 1787 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |