Proof of Theorem ax12inda
| Step | Hyp | Ref
| Expression |
| 1 | | ax6ev 1969 |
. . 3
⊢
∃𝑤 𝑤 = 𝑦 |
| 2 | | ax12inda.1 |
. . . . . . 7
⊢ (¬
∀𝑥 𝑥 = 𝑤 → (𝑥 = 𝑤 → (𝜑 → ∀𝑥(𝑥 = 𝑤 → 𝜑)))) |
| 3 | 2 | ax12inda2 38948 |
. . . . . 6
⊢ (¬
∀𝑥 𝑥 = 𝑤 → (𝑥 = 𝑤 → (∀𝑧𝜑 → ∀𝑥(𝑥 = 𝑤 → ∀𝑧𝜑)))) |
| 4 | | dveeq2-o 38934 |
. . . . . . . . 9
⊢ (¬
∀𝑥 𝑥 = 𝑦 → (𝑤 = 𝑦 → ∀𝑥 𝑤 = 𝑦)) |
| 5 | 4 | imp 406 |
. . . . . . . 8
⊢ ((¬
∀𝑥 𝑥 = 𝑦 ∧ 𝑤 = 𝑦) → ∀𝑥 𝑤 = 𝑦) |
| 6 | | hba1-o 38898 |
. . . . . . . . . 10
⊢
(∀𝑥 𝑤 = 𝑦 → ∀𝑥∀𝑥 𝑤 = 𝑦) |
| 7 | | equequ2 2025 |
. . . . . . . . . . 11
⊢ (𝑤 = 𝑦 → (𝑥 = 𝑤 ↔ 𝑥 = 𝑦)) |
| 8 | 7 | sps-o 38909 |
. . . . . . . . . 10
⊢
(∀𝑥 𝑤 = 𝑦 → (𝑥 = 𝑤 ↔ 𝑥 = 𝑦)) |
| 9 | 6, 8 | albidh 1866 |
. . . . . . . . 9
⊢
(∀𝑥 𝑤 = 𝑦 → (∀𝑥 𝑥 = 𝑤 ↔ ∀𝑥 𝑥 = 𝑦)) |
| 10 | 9 | notbid 318 |
. . . . . . . 8
⊢
(∀𝑥 𝑤 = 𝑦 → (¬ ∀𝑥 𝑥 = 𝑤 ↔ ¬ ∀𝑥 𝑥 = 𝑦)) |
| 11 | 5, 10 | syl 17 |
. . . . . . 7
⊢ ((¬
∀𝑥 𝑥 = 𝑦 ∧ 𝑤 = 𝑦) → (¬ ∀𝑥 𝑥 = 𝑤 ↔ ¬ ∀𝑥 𝑥 = 𝑦)) |
| 12 | 7 | adantl 481 |
. . . . . . . 8
⊢ ((¬
∀𝑥 𝑥 = 𝑦 ∧ 𝑤 = 𝑦) → (𝑥 = 𝑤 ↔ 𝑥 = 𝑦)) |
| 13 | 8 | imbi1d 341 |
. . . . . . . . . . 11
⊢
(∀𝑥 𝑤 = 𝑦 → ((𝑥 = 𝑤 → ∀𝑧𝜑) ↔ (𝑥 = 𝑦 → ∀𝑧𝜑))) |
| 14 | 6, 13 | albidh 1866 |
. . . . . . . . . 10
⊢
(∀𝑥 𝑤 = 𝑦 → (∀𝑥(𝑥 = 𝑤 → ∀𝑧𝜑) ↔ ∀𝑥(𝑥 = 𝑦 → ∀𝑧𝜑))) |
| 15 | 5, 14 | syl 17 |
. . . . . . . . 9
⊢ ((¬
∀𝑥 𝑥 = 𝑦 ∧ 𝑤 = 𝑦) → (∀𝑥(𝑥 = 𝑤 → ∀𝑧𝜑) ↔ ∀𝑥(𝑥 = 𝑦 → ∀𝑧𝜑))) |
| 16 | 15 | imbi2d 340 |
. . . . . . . 8
⊢ ((¬
∀𝑥 𝑥 = 𝑦 ∧ 𝑤 = 𝑦) → ((∀𝑧𝜑 → ∀𝑥(𝑥 = 𝑤 → ∀𝑧𝜑)) ↔ (∀𝑧𝜑 → ∀𝑥(𝑥 = 𝑦 → ∀𝑧𝜑)))) |
| 17 | 12, 16 | imbi12d 344 |
. . . . . . 7
⊢ ((¬
∀𝑥 𝑥 = 𝑦 ∧ 𝑤 = 𝑦) → ((𝑥 = 𝑤 → (∀𝑧𝜑 → ∀𝑥(𝑥 = 𝑤 → ∀𝑧𝜑))) ↔ (𝑥 = 𝑦 → (∀𝑧𝜑 → ∀𝑥(𝑥 = 𝑦 → ∀𝑧𝜑))))) |
| 18 | 11, 17 | imbi12d 344 |
. . . . . 6
⊢ ((¬
∀𝑥 𝑥 = 𝑦 ∧ 𝑤 = 𝑦) → ((¬ ∀𝑥 𝑥 = 𝑤 → (𝑥 = 𝑤 → (∀𝑧𝜑 → ∀𝑥(𝑥 = 𝑤 → ∀𝑧𝜑)))) ↔ (¬ ∀𝑥 𝑥 = 𝑦 → (𝑥 = 𝑦 → (∀𝑧𝜑 → ∀𝑥(𝑥 = 𝑦 → ∀𝑧𝜑)))))) |
| 19 | 3, 18 | mpbii 233 |
. . . . 5
⊢ ((¬
∀𝑥 𝑥 = 𝑦 ∧ 𝑤 = 𝑦) → (¬ ∀𝑥 𝑥 = 𝑦 → (𝑥 = 𝑦 → (∀𝑧𝜑 → ∀𝑥(𝑥 = 𝑦 → ∀𝑧𝜑))))) |
| 20 | 19 | ex 412 |
. . . 4
⊢ (¬
∀𝑥 𝑥 = 𝑦 → (𝑤 = 𝑦 → (¬ ∀𝑥 𝑥 = 𝑦 → (𝑥 = 𝑦 → (∀𝑧𝜑 → ∀𝑥(𝑥 = 𝑦 → ∀𝑧𝜑)))))) |
| 21 | 20 | exlimdv 1933 |
. . 3
⊢ (¬
∀𝑥 𝑥 = 𝑦 → (∃𝑤 𝑤 = 𝑦 → (¬ ∀𝑥 𝑥 = 𝑦 → (𝑥 = 𝑦 → (∀𝑧𝜑 → ∀𝑥(𝑥 = 𝑦 → ∀𝑧𝜑)))))) |
| 22 | 1, 21 | mpi 20 |
. 2
⊢ (¬
∀𝑥 𝑥 = 𝑦 → (¬ ∀𝑥 𝑥 = 𝑦 → (𝑥 = 𝑦 → (∀𝑧𝜑 → ∀𝑥(𝑥 = 𝑦 → ∀𝑧𝜑))))) |
| 23 | 22 | pm2.43i 52 |
1
⊢ (¬
∀𝑥 𝑥 = 𝑦 → (𝑥 = 𝑦 → (∀𝑧𝜑 → ∀𝑥(𝑥 = 𝑦 → ∀𝑧𝜑)))) |