|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > 19.21-2 | Structured version Visualization version GIF version | ||
| Description: Version of 19.21 2207 with two quantifiers. (Contributed by NM, 4-Feb-2005.) | 
| Ref | Expression | 
|---|---|
| 19.21-2.1 | ⊢ Ⅎ𝑥𝜑 | 
| 19.21-2.2 | ⊢ Ⅎ𝑦𝜑 | 
| Ref | Expression | 
|---|---|
| 19.21-2 | ⊢ (∀𝑥∀𝑦(𝜑 → 𝜓) ↔ (𝜑 → ∀𝑥∀𝑦𝜓)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | 19.21-2.2 | . . . 4 ⊢ Ⅎ𝑦𝜑 | |
| 2 | 1 | 19.21 2207 | . . 3 ⊢ (∀𝑦(𝜑 → 𝜓) ↔ (𝜑 → ∀𝑦𝜓)) | 
| 3 | 2 | albii 1819 | . 2 ⊢ (∀𝑥∀𝑦(𝜑 → 𝜓) ↔ ∀𝑥(𝜑 → ∀𝑦𝜓)) | 
| 4 | 19.21-2.1 | . . 3 ⊢ Ⅎ𝑥𝜑 | |
| 5 | 4 | 19.21 2207 | . 2 ⊢ (∀𝑥(𝜑 → ∀𝑦𝜓) ↔ (𝜑 → ∀𝑥∀𝑦𝜓)) | 
| 6 | 3, 5 | bitri 275 | 1 ⊢ (∀𝑥∀𝑦(𝜑 → 𝜓) ↔ (𝜑 → ∀𝑥∀𝑦𝜓)) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ↔ wb 206 ∀wal 1538 Ⅎwnf 1783 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-12 2177 | 
| This theorem depends on definitions: df-bi 207 df-ex 1780 df-nf 1784 | 
| This theorem is referenced by: cotr2g 15015 dford4 43041 | 
| Copyright terms: Public domain | W3C validator |