MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  19.21-2 Structured version   Visualization version   GIF version

Theorem 19.21-2 2205
Description: Version of 19.21 2203 with two quantifiers. (Contributed by NM, 4-Feb-2005.)
Hypotheses
Ref Expression
19.21-2.1 𝑥𝜑
19.21-2.2 𝑦𝜑
Assertion
Ref Expression
19.21-2 (∀𝑥𝑦(𝜑𝜓) ↔ (𝜑 → ∀𝑥𝑦𝜓))

Proof of Theorem 19.21-2
StepHypRef Expression
1 19.21-2.2 . . . 4 𝑦𝜑
2119.21 2203 . . 3 (∀𝑦(𝜑𝜓) ↔ (𝜑 → ∀𝑦𝜓))
32albii 1823 . 2 (∀𝑥𝑦(𝜑𝜓) ↔ ∀𝑥(𝜑 → ∀𝑦𝜓))
4 19.21-2.1 . . 3 𝑥𝜑
5419.21 2203 . 2 (∀𝑥(𝜑 → ∀𝑦𝜓) ↔ (𝜑 → ∀𝑥𝑦𝜓))
63, 5bitri 274 1 (∀𝑥𝑦(𝜑𝜓) ↔ (𝜑 → ∀𝑥𝑦𝜓))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wal 1537  wnf 1787
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-12 2173
This theorem depends on definitions:  df-bi 206  df-ex 1784  df-nf 1788
This theorem is referenced by:  cotr2g  14615  dford4  40767
  Copyright terms: Public domain W3C validator