MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  trunorfalOLD Structured version   Visualization version   GIF version

Theorem trunorfalOLD 1590
Description: Obsolete version of trunorfal 1589 as of 17-Dec-2023. (Contributed by Remi, 25-Oct-2023.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
trunorfalOLD ((⊤ ⊥) ↔ ⊥)

Proof of Theorem trunorfalOLD
StepHypRef Expression
1 df-nor 1526 . 2 ((⊤ ⊥) ↔ ¬ (⊤ ∨ ⊥))
2 tru 1543 . . . . 5
32orci 862 . . . 4 (⊤ ∨ ⊥)
43notnoti 143 . . 3 ¬ ¬ (⊤ ∨ ⊥)
54bifal 1555 . 2 (¬ (⊤ ∨ ⊥) ↔ ⊥)
61, 5bitri 274 1 ((⊤ ⊥) ↔ ⊥)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 205  wo 844   wnor 1525  wtru 1540  wfal 1551
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-or 845  df-nor 1526  df-tru 1542  df-fal 1552
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator