|   | Mathbox for Giovanni Mascellani | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > Mathboxes > tsna1 | Structured version Visualization version GIF version | ||
| Description: A Tseitin axiom for logical incompatibility, in deduction form. (Contributed by Giovanni Mascellani, 24-Mar-2018.) | 
| Ref | Expression | 
|---|---|
| tsna1 | ⊢ (𝜃 → ((¬ 𝜑 ∨ ¬ 𝜓) ∨ ¬ (𝜑 ⊼ 𝜓))) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | tsan1 38148 | . 2 ⊢ (𝜃 → ((¬ 𝜑 ∨ ¬ 𝜓) ∨ (𝜑 ∧ 𝜓))) | |
| 2 | notnotb 315 | . . . . 5 ⊢ ((𝜑 ⊼ 𝜓) ↔ ¬ ¬ (𝜑 ⊼ 𝜓)) | |
| 3 | df-nan 1492 | . . . . 5 ⊢ ((𝜑 ⊼ 𝜓) ↔ ¬ (𝜑 ∧ 𝜓)) | |
| 4 | 2, 3 | bitr3i 277 | . . . 4 ⊢ (¬ ¬ (𝜑 ⊼ 𝜓) ↔ ¬ (𝜑 ∧ 𝜓)) | 
| 5 | 4 | con4bii 321 | . . 3 ⊢ (¬ (𝜑 ⊼ 𝜓) ↔ (𝜑 ∧ 𝜓)) | 
| 6 | 5 | orbi2i 913 | . 2 ⊢ (((¬ 𝜑 ∨ ¬ 𝜓) ∨ ¬ (𝜑 ⊼ 𝜓)) ↔ ((¬ 𝜑 ∨ ¬ 𝜓) ∨ (𝜑 ∧ 𝜓))) | 
| 7 | 1, 6 | sylibr 234 | 1 ⊢ (𝜃 → ((¬ 𝜑 ∨ ¬ 𝜓) ∨ ¬ (𝜑 ⊼ 𝜓))) | 
| Colors of variables: wff setvar class | 
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∨ wo 848 ⊼ wnan 1491 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-nan 1492 | 
| This theorem is referenced by: (None) | 
| Copyright terms: Public domain | W3C validator |