MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  con4bii Structured version   Visualization version   GIF version

Theorem con4bii 321
Description: A contraposition inference. (Contributed by NM, 21-May-1994.)
Hypothesis
Ref Expression
con4bii.1 𝜑 ↔ ¬ 𝜓)
Assertion
Ref Expression
con4bii (𝜑𝜓)

Proof of Theorem con4bii
StepHypRef Expression
1 con4bii.1 . 2 𝜑 ↔ ¬ 𝜓)
2 notbi 319 . 2 ((𝜑𝜓) ↔ (¬ 𝜑 ↔ ¬ 𝜓))
31, 2mpbir 231 1 (𝜑𝜓)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 206
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207
This theorem is referenced by:  2false  375  equsexvw  2003  cbvexv1  2342  cbvex2v  2344  cbvex  2402  cbvex2  2415  2ralorOLD  3219  rexcom  3274  cbvrexfw  3288  ceqsex  3513  ceqsexv  3515  gencbval  3526  ceqsralbv  3640  snnzb  4698  raldifsnb  4776  uni0b  4913  opab0  5539  tsna1  38126  ralopabb  43401
  Copyright terms: Public domain W3C validator