MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  con4bii Structured version   Visualization version   GIF version

Theorem con4bii 321
Description: A contraposition inference. (Contributed by NM, 21-May-1994.)
Hypothesis
Ref Expression
con4bii.1 𝜑 ↔ ¬ 𝜓)
Assertion
Ref Expression
con4bii (𝜑𝜓)

Proof of Theorem con4bii
StepHypRef Expression
1 con4bii.1 . 2 𝜑 ↔ ¬ 𝜓)
2 notbi 319 . 2 ((𝜑𝜓) ↔ (¬ 𝜑 ↔ ¬ 𝜓))
31, 2mpbir 230 1 (𝜑𝜓)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 205
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206
This theorem is referenced by:  2false  376  equsexvw  2009  cbvexv1  2339  cbvex2v  2341  cbvex  2399  cbvex2  2412  2ralorOLD  3230  rexcom  3288  cbvrexfw  3303  ceqsex  3524  ceqsexv  3526  gencbval  3538  ceqsralbv  3646  snnzb  4723  raldifsnb  4800  uni0b  4938  opab0  5555  tsna1  37060  ralopabb  42210
  Copyright terms: Public domain W3C validator