| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > con4bii | Structured version Visualization version GIF version | ||
| Description: A contraposition inference. (Contributed by NM, 21-May-1994.) |
| Ref | Expression |
|---|---|
| con4bii.1 | ⊢ (¬ 𝜑 ↔ ¬ 𝜓) |
| Ref | Expression |
|---|---|
| con4bii | ⊢ (𝜑 ↔ 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | con4bii.1 | . 2 ⊢ (¬ 𝜑 ↔ ¬ 𝜓) | |
| 2 | notbi 319 | . 2 ⊢ ((𝜑 ↔ 𝜓) ↔ (¬ 𝜑 ↔ ¬ 𝜓)) | |
| 3 | 1, 2 | mpbir 231 | 1 ⊢ (𝜑 ↔ 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ↔ wb 206 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 |
| This theorem is referenced by: 2false 375 equsexvw 2006 cbvexv1 2344 cbvex2v 2346 cbvex 2401 cbvex2 2414 rexcom 3262 cbvrexfw 3274 ceqsex 3486 ceqsexv 3487 gencbval 3498 ceqsralbv 3608 snnzb 4672 raldifsnb 4749 uni0b 4886 opab0 5499 tsna1 38207 ralopabb 43531 |
| Copyright terms: Public domain | W3C validator |