MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  con4bii Structured version   Visualization version   GIF version

Theorem con4bii 321
Description: A contraposition inference. (Contributed by NM, 21-May-1994.)
Hypothesis
Ref Expression
con4bii.1 𝜑 ↔ ¬ 𝜓)
Assertion
Ref Expression
con4bii (𝜑𝜓)

Proof of Theorem con4bii
StepHypRef Expression
1 con4bii.1 . 2 𝜑 ↔ ¬ 𝜓)
2 notbi 319 . 2 ((𝜑𝜓) ↔ (¬ 𝜑 ↔ ¬ 𝜓))
31, 2mpbir 231 1 (𝜑𝜓)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 206
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207
This theorem is referenced by:  2false  375  equsexvw  2004  cbvexv1  2348  cbvex2v  2350  cbvex  2407  cbvex2  2420  2ralorOLD  3238  rexcom  3296  cbvrexfw  3311  ceqsex  3540  ceqsexv  3542  gencbval  3555  ceqsralbv  3670  snnzb  4743  raldifsnb  4821  uni0b  4957  opab0  5573  tsna1  38104  ralopabb  43373
  Copyright terms: Public domain W3C validator