MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  con4bii Structured version   Visualization version   GIF version

Theorem con4bii 321
Description: A contraposition inference. (Contributed by NM, 21-May-1994.)
Hypothesis
Ref Expression
con4bii.1 𝜑 ↔ ¬ 𝜓)
Assertion
Ref Expression
con4bii (𝜑𝜓)

Proof of Theorem con4bii
StepHypRef Expression
1 con4bii.1 . 2 𝜑 ↔ ¬ 𝜓)
2 notbi 319 . 2 ((𝜑𝜓) ↔ (¬ 𝜑 ↔ ¬ 𝜓))
31, 2mpbir 230 1 (𝜑𝜓)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 205
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206
This theorem is referenced by:  2false  376  equsexvw  2009  cbvexv1  2339  cbvex2v  2341  cbvex  2399  cbvex2  2412  2ralorOLD  3230  rexcom  3288  cbvrexfw  3303  ceqsex  3522  ceqsexv  3524  gencbval  3536  ceqsralbv  3643  snnzb  4720  raldifsnb  4797  uni0b  4935  opab0  5552  tsna1  36949  ralopabb  42094
  Copyright terms: Public domain W3C validator