| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > con4bii | Structured version Visualization version GIF version | ||
| Description: A contraposition inference. (Contributed by NM, 21-May-1994.) |
| Ref | Expression |
|---|---|
| con4bii.1 | ⊢ (¬ 𝜑 ↔ ¬ 𝜓) |
| Ref | Expression |
|---|---|
| con4bii | ⊢ (𝜑 ↔ 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | con4bii.1 | . 2 ⊢ (¬ 𝜑 ↔ ¬ 𝜓) | |
| 2 | notbi 319 | . 2 ⊢ ((𝜑 ↔ 𝜓) ↔ (¬ 𝜑 ↔ ¬ 𝜓)) | |
| 3 | 1, 2 | mpbir 231 | 1 ⊢ (𝜑 ↔ 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ↔ wb 206 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 |
| This theorem is referenced by: 2false 375 equsexvw 2003 cbvexv1 2342 cbvex2v 2344 cbvex 2402 cbvex2 2415 2ralorOLD 3219 rexcom 3274 cbvrexfw 3288 ceqsex 3513 ceqsexv 3515 gencbval 3526 ceqsralbv 3640 snnzb 4698 raldifsnb 4776 uni0b 4913 opab0 5539 tsna1 38126 ralopabb 43401 |
| Copyright terms: Public domain | W3C validator |