![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > con4bii | Structured version Visualization version GIF version |
Description: A contraposition inference. (Contributed by NM, 21-May-1994.) |
Ref | Expression |
---|---|
con4bii.1 | ⊢ (¬ 𝜑 ↔ ¬ 𝜓) |
Ref | Expression |
---|---|
con4bii | ⊢ (𝜑 ↔ 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | con4bii.1 | . 2 ⊢ (¬ 𝜑 ↔ ¬ 𝜓) | |
2 | notbi 319 | . 2 ⊢ ((𝜑 ↔ 𝜓) ↔ (¬ 𝜑 ↔ ¬ 𝜓)) | |
3 | 1, 2 | mpbir 231 | 1 ⊢ (𝜑 ↔ 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 206 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 |
This theorem is referenced by: 2false 375 equsexvw 2004 cbvexv1 2348 cbvex2v 2350 cbvex 2407 cbvex2 2420 2ralorOLD 3238 rexcom 3296 cbvrexfw 3311 ceqsex 3540 ceqsexv 3542 gencbval 3555 ceqsralbv 3670 snnzb 4743 raldifsnb 4821 uni0b 4957 opab0 5573 tsna1 38104 ralopabb 43373 |
Copyright terms: Public domain | W3C validator |