| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > con4bii | Structured version Visualization version GIF version | ||
| Description: A contraposition inference. (Contributed by NM, 21-May-1994.) |
| Ref | Expression |
|---|---|
| con4bii.1 | ⊢ (¬ 𝜑 ↔ ¬ 𝜓) |
| Ref | Expression |
|---|---|
| con4bii | ⊢ (𝜑 ↔ 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | con4bii.1 | . 2 ⊢ (¬ 𝜑 ↔ ¬ 𝜓) | |
| 2 | notbi 319 | . 2 ⊢ ((𝜑 ↔ 𝜓) ↔ (¬ 𝜑 ↔ ¬ 𝜓)) | |
| 3 | 1, 2 | mpbir 231 | 1 ⊢ (𝜑 ↔ 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ↔ wb 206 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 |
| This theorem is referenced by: 2false 375 equsexvw 2005 cbvexv1 2340 cbvex2v 2342 cbvex 2398 cbvex2 2411 rexcom 3267 cbvrexfw 3281 ceqsex 3499 ceqsexv 3501 gencbval 3512 ceqsralbv 3626 snnzb 4685 raldifsnb 4763 uni0b 4900 opab0 5517 tsna1 38145 ralopabb 43407 |
| Copyright terms: Public domain | W3C validator |