![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > con4bii | Structured version Visualization version GIF version |
Description: A contraposition inference. (Contributed by NM, 21-May-1994.) |
Ref | Expression |
---|---|
con4bii.1 | ⊢ (¬ 𝜑 ↔ ¬ 𝜓) |
Ref | Expression |
---|---|
con4bii | ⊢ (𝜑 ↔ 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | con4bii.1 | . 2 ⊢ (¬ 𝜑 ↔ ¬ 𝜓) | |
2 | notbi 318 | . 2 ⊢ ((𝜑 ↔ 𝜓) ↔ (¬ 𝜑 ↔ ¬ 𝜓)) | |
3 | 1, 2 | mpbir 230 | 1 ⊢ (𝜑 ↔ 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 205 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 |
This theorem is referenced by: 2false 375 equsexvw 2008 cbvexv1 2338 cbvex2v 2340 cbvex 2398 cbvex2 2411 2ralorOLD 3229 rexcom 3287 cbvrexfw 3302 ceqsex 3523 ceqsexv 3525 gencbval 3537 ceqsralbv 3645 snnzb 4722 raldifsnb 4799 uni0b 4937 opab0 5554 tsna1 37007 ralopabb 42152 |
Copyright terms: Public domain | W3C validator |