MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  con4bii Structured version   Visualization version   GIF version

Theorem con4bii 320
Description: A contraposition inference. (Contributed by NM, 21-May-1994.)
Hypothesis
Ref Expression
con4bii.1 𝜑 ↔ ¬ 𝜓)
Assertion
Ref Expression
con4bii (𝜑𝜓)

Proof of Theorem con4bii
StepHypRef Expression
1 con4bii.1 . 2 𝜑 ↔ ¬ 𝜓)
2 notbi 318 . 2 ((𝜑𝜓) ↔ (¬ 𝜑 ↔ ¬ 𝜓))
31, 2mpbir 230 1 (𝜑𝜓)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 205
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206
This theorem is referenced by:  2false  375  equsexvw  2008  cbvexv1  2338  cbvex2v  2340  cbvex  2398  cbvex2  2411  2ralorOLD  3229  rexcom  3287  cbvrexfw  3302  ceqsex  3523  ceqsexv  3525  gencbval  3537  ceqsralbv  3645  snnzb  4722  raldifsnb  4799  uni0b  4937  opab0  5554  tsna1  37007  ralopabb  42152
  Copyright terms: Public domain W3C validator