| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > con4bii | Structured version Visualization version GIF version | ||
| Description: A contraposition inference. (Contributed by NM, 21-May-1994.) |
| Ref | Expression |
|---|---|
| con4bii.1 | ⊢ (¬ 𝜑 ↔ ¬ 𝜓) |
| Ref | Expression |
|---|---|
| con4bii | ⊢ (𝜑 ↔ 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | con4bii.1 | . 2 ⊢ (¬ 𝜑 ↔ ¬ 𝜓) | |
| 2 | notbi 319 | . 2 ⊢ ((𝜑 ↔ 𝜓) ↔ (¬ 𝜑 ↔ ¬ 𝜓)) | |
| 3 | 1, 2 | mpbir 231 | 1 ⊢ (𝜑 ↔ 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ↔ wb 206 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 |
| This theorem is referenced by: 2false 375 equsexvw 2005 cbvexv1 2340 cbvex2v 2342 cbvex 2397 cbvex2 2410 rexcom 3266 cbvrexfw 3279 ceqsex 3496 ceqsexv 3498 gencbval 3509 ceqsralbv 3623 snnzb 4682 raldifsnb 4760 uni0b 4897 opab0 5514 tsna1 38138 ralopabb 43400 |
| Copyright terms: Public domain | W3C validator |