Mathbox for Giovanni Mascellani |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > tsxo1 | Structured version Visualization version GIF version |
Description: A Tseitin axiom for logical exclusive disjunction, in deduction form. (Contributed by Giovanni Mascellani, 24-Mar-2018.) |
Ref | Expression |
---|---|
tsxo1 | ⊢ (𝜃 → ((¬ 𝜑 ∨ ¬ 𝜓) ∨ ¬ (𝜑 ⊻ 𝜓))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tsbi1 36218 | . 2 ⊢ (𝜃 → ((¬ 𝜑 ∨ ¬ 𝜓) ∨ (𝜑 ↔ 𝜓))) | |
2 | xnor 1505 | . . 3 ⊢ ((𝜑 ↔ 𝜓) ↔ ¬ (𝜑 ⊻ 𝜓)) | |
3 | 2 | orbi2i 909 | . 2 ⊢ (((¬ 𝜑 ∨ ¬ 𝜓) ∨ (𝜑 ↔ 𝜓)) ↔ ((¬ 𝜑 ∨ ¬ 𝜓) ∨ ¬ (𝜑 ⊻ 𝜓))) |
4 | 1, 3 | sylib 217 | 1 ⊢ (𝜃 → ((¬ 𝜑 ∨ ¬ 𝜓) ∨ ¬ (𝜑 ⊻ 𝜓))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∨ wo 843 ⊻ wxo 1503 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-xor 1504 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |