| Mathbox for Giovanni Mascellani |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > tsbi1 | Structured version Visualization version GIF version | ||
| Description: A Tseitin axiom for logical biconditional, in deduction form. (Contributed by Giovanni Mascellani, 24-Mar-2018.) |
| Ref | Expression |
|---|---|
| tsbi1 | ⊢ (𝜃 → ((¬ 𝜑 ∨ ¬ 𝜓) ∨ (𝜑 ↔ 𝜓))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pm5.1 823 | . . . 4 ⊢ ((𝜑 ∧ 𝜓) → (𝜑 ↔ 𝜓)) | |
| 2 | 1 | olcd 874 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → ((¬ 𝜑 ∨ ¬ 𝜓) ∨ (𝜑 ↔ 𝜓))) |
| 3 | pm3.13 996 | . . . 4 ⊢ (¬ (𝜑 ∧ 𝜓) → (¬ 𝜑 ∨ ¬ 𝜓)) | |
| 4 | 3 | orcd 873 | . . 3 ⊢ (¬ (𝜑 ∧ 𝜓) → ((¬ 𝜑 ∨ ¬ 𝜓) ∨ (𝜑 ↔ 𝜓))) |
| 5 | 2, 4 | pm2.61i 182 | . 2 ⊢ ((¬ 𝜑 ∨ ¬ 𝜓) ∨ (𝜑 ↔ 𝜓)) |
| 6 | 5 | a1i 11 | 1 ⊢ (𝜃 → ((¬ 𝜑 ∨ ¬ 𝜓) ∨ (𝜑 ↔ 𝜓))) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∨ wo 847 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 |
| This theorem is referenced by: tsxo1 38166 mpobi123f 38191 mptbi12f 38195 ac6s6 38201 |
| Copyright terms: Public domain | W3C validator |