|   | Mathbox for Giovanni Mascellani | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > Mathboxes > tsbi1 | Structured version Visualization version GIF version | ||
| Description: A Tseitin axiom for logical biconditional, in deduction form. (Contributed by Giovanni Mascellani, 24-Mar-2018.) | 
| Ref | Expression | 
|---|---|
| tsbi1 | ⊢ (𝜃 → ((¬ 𝜑 ∨ ¬ 𝜓) ∨ (𝜑 ↔ 𝜓))) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | pm5.1 823 | . . . 4 ⊢ ((𝜑 ∧ 𝜓) → (𝜑 ↔ 𝜓)) | |
| 2 | 1 | olcd 874 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → ((¬ 𝜑 ∨ ¬ 𝜓) ∨ (𝜑 ↔ 𝜓))) | 
| 3 | pm3.13 996 | . . . 4 ⊢ (¬ (𝜑 ∧ 𝜓) → (¬ 𝜑 ∨ ¬ 𝜓)) | |
| 4 | 3 | orcd 873 | . . 3 ⊢ (¬ (𝜑 ∧ 𝜓) → ((¬ 𝜑 ∨ ¬ 𝜓) ∨ (𝜑 ↔ 𝜓))) | 
| 5 | 2, 4 | pm2.61i 182 | . 2 ⊢ ((¬ 𝜑 ∨ ¬ 𝜓) ∨ (𝜑 ↔ 𝜓)) | 
| 6 | 5 | a1i 11 | 1 ⊢ (𝜃 → ((¬ 𝜑 ∨ ¬ 𝜓) ∨ (𝜑 ↔ 𝜓))) | 
| Colors of variables: wff setvar class | 
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∨ wo 847 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 | 
| This theorem is referenced by: tsxo1 38145 mpobi123f 38170 mptbi12f 38174 ac6s6 38180 | 
| Copyright terms: Public domain | W3C validator |