| Mathbox for Giovanni Mascellani |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > tsbi4 | Structured version Visualization version GIF version | ||
| Description: A Tseitin axiom for logical biconditional, in deduction form. (Contributed by Giovanni Mascellani, 24-Mar-2018.) |
| Ref | Expression |
|---|---|
| tsbi4 | ⊢ (𝜃 → ((¬ 𝜑 ∨ 𝜓) ∨ ¬ (𝜑 ↔ 𝜓))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tsbi3 38142 | . 2 ⊢ (𝜃 → ((𝜓 ∨ ¬ 𝜑) ∨ ¬ (𝜓 ↔ 𝜑))) | |
| 2 | orcom 871 | . . 3 ⊢ ((𝜓 ∨ ¬ 𝜑) ↔ (¬ 𝜑 ∨ 𝜓)) | |
| 3 | bicom 222 | . . . 4 ⊢ ((𝜓 ↔ 𝜑) ↔ (𝜑 ↔ 𝜓)) | |
| 4 | 3 | notbii 320 | . . 3 ⊢ (¬ (𝜓 ↔ 𝜑) ↔ ¬ (𝜑 ↔ 𝜓)) |
| 5 | 2, 4 | orbi12i 915 | . 2 ⊢ (((𝜓 ∨ ¬ 𝜑) ∨ ¬ (𝜓 ↔ 𝜑)) ↔ ((¬ 𝜑 ∨ 𝜓) ∨ ¬ (𝜑 ↔ 𝜓))) |
| 6 | 1, 5 | sylib 218 | 1 ⊢ (𝜃 → ((¬ 𝜑 ∨ 𝜓) ∨ ¬ (𝜑 ↔ 𝜓))) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∨ wo 848 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-or 849 |
| This theorem is referenced by: tsxo4 38147 mpobi123f 38169 mptbi12f 38173 ac6s6 38179 |
| Copyright terms: Public domain | W3C validator |