Mathbox for Giovanni Mascellani |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > tsbi4 | Structured version Visualization version GIF version |
Description: A Tseitin axiom for logical biconditional, in deduction form. (Contributed by Giovanni Mascellani, 24-Mar-2018.) |
Ref | Expression |
---|---|
tsbi4 | ⊢ (𝜃 → ((¬ 𝜑 ∨ 𝜓) ∨ ¬ (𝜑 ↔ 𝜓))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tsbi3 36293 | . 2 ⊢ (𝜃 → ((𝜓 ∨ ¬ 𝜑) ∨ ¬ (𝜓 ↔ 𝜑))) | |
2 | orcom 867 | . . 3 ⊢ ((𝜓 ∨ ¬ 𝜑) ↔ (¬ 𝜑 ∨ 𝜓)) | |
3 | bicom 221 | . . . 4 ⊢ ((𝜓 ↔ 𝜑) ↔ (𝜑 ↔ 𝜓)) | |
4 | 3 | notbii 320 | . . 3 ⊢ (¬ (𝜓 ↔ 𝜑) ↔ ¬ (𝜑 ↔ 𝜓)) |
5 | 2, 4 | orbi12i 912 | . 2 ⊢ (((𝜓 ∨ ¬ 𝜑) ∨ ¬ (𝜓 ↔ 𝜑)) ↔ ((¬ 𝜑 ∨ 𝜓) ∨ ¬ (𝜑 ↔ 𝜓))) |
6 | 1, 5 | sylib 217 | 1 ⊢ (𝜃 → ((¬ 𝜑 ∨ 𝜓) ∨ ¬ (𝜑 ↔ 𝜓))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∨ wo 844 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-or 845 |
This theorem is referenced by: tsxo4 36298 mpobi123f 36320 mptbi12f 36324 ac6s6 36330 |
Copyright terms: Public domain | W3C validator |