![]() |
Mathbox for Alan Sare |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > e01 | Structured version Visualization version GIF version |
Description: A virtual deduction elimination rule. (Contributed by Alan Sare, 25-Jul-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
e01.1 | ⊢ 𝜑 |
e01.2 | ⊢ ( 𝜓 ▶ 𝜒 ) |
e01.3 | ⊢ (𝜑 → (𝜒 → 𝜃)) |
Ref | Expression |
---|---|
e01 | ⊢ ( 𝜓 ▶ 𝜃 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | e01.1 | . . 3 ⊢ 𝜑 | |
2 | 1 | vd01 44036 | . 2 ⊢ ( 𝜓 ▶ 𝜑 ) |
3 | e01.2 | . 2 ⊢ ( 𝜓 ▶ 𝜒 ) | |
4 | e01.3 | . 2 ⊢ (𝜑 → (𝜒 → 𝜃)) | |
5 | 2, 3, 4 | e11 44127 | 1 ⊢ ( 𝜓 ▶ 𝜃 ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ( wvd1 44008 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-vd1 44009 |
This theorem is referenced by: e01an 44131 trsspwALT 44257 sspwtr 44260 pwtrVD 44263 pwtrrVD 44264 snssiALTVD 44266 snelpwrVD 44270 sstrALT2VD 44273 suctrALT2VD 44275 3impexpVD 44295 ax6e2eqVD 44346 ax6e2ndVD 44347 2sb5ndVD 44349 vk15.4jVD 44353 |
Copyright terms: Public domain | W3C validator |