![]() |
Mathbox for Alan Sare |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > e01 | Structured version Visualization version GIF version |
Description: A virtual deduction elimination rule. (Contributed by Alan Sare, 25-Jul-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
e01.1 | ⊢ 𝜑 |
e01.2 | ⊢ ( 𝜓 ▶ 𝜒 ) |
e01.3 | ⊢ (𝜑 → (𝜒 → 𝜃)) |
Ref | Expression |
---|---|
e01 | ⊢ ( 𝜓 ▶ 𝜃 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | e01.1 | . . 3 ⊢ 𝜑 | |
2 | 1 | vd01 43348 | . 2 ⊢ ( 𝜓 ▶ 𝜑 ) |
3 | e01.2 | . 2 ⊢ ( 𝜓 ▶ 𝜒 ) | |
4 | e01.3 | . 2 ⊢ (𝜑 → (𝜒 → 𝜃)) | |
5 | 2, 3, 4 | e11 43439 | 1 ⊢ ( 𝜓 ▶ 𝜃 ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ( wvd1 43320 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-vd1 43321 |
This theorem is referenced by: e01an 43443 trsspwALT 43569 sspwtr 43572 pwtrVD 43575 pwtrrVD 43576 snssiALTVD 43578 snelpwrVD 43582 sstrALT2VD 43585 suctrALT2VD 43587 3impexpVD 43607 ax6e2eqVD 43658 ax6e2ndVD 43659 2sb5ndVD 43661 vk15.4jVD 43665 |
Copyright terms: Public domain | W3C validator |