![]() |
Mathbox for Alan Sare |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > e01 | Structured version Visualization version GIF version |
Description: A virtual deduction elimination rule. (Contributed by Alan Sare, 25-Jul-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
e01.1 | ⊢ 𝜑 |
e01.2 | ⊢ ( 𝜓 ▶ 𝜒 ) |
e01.3 | ⊢ (𝜑 → (𝜒 → 𝜃)) |
Ref | Expression |
---|---|
e01 | ⊢ ( 𝜓 ▶ 𝜃 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | e01.1 | . . 3 ⊢ 𝜑 | |
2 | 1 | vd01 39579 | . 2 ⊢ ( 𝜓 ▶ 𝜑 ) |
3 | e01.2 | . 2 ⊢ ( 𝜓 ▶ 𝜒 ) | |
4 | e01.3 | . 2 ⊢ (𝜑 → (𝜒 → 𝜃)) | |
5 | 2, 3, 4 | e11 39670 | 1 ⊢ ( 𝜓 ▶ 𝜃 ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ( wvd1 39542 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 199 df-vd1 39543 |
This theorem is referenced by: e01an 39674 trsspwALT 39801 sspwtr 39804 pwtrVD 39807 pwtrrVD 39808 snssiALTVD 39810 snelpwrVD 39814 sstrALT2VD 39817 suctrALT2VD 39819 3impexpVD 39839 ax6e2eqVD 39890 ax6e2ndVD 39891 2sb5ndVD 39893 vk15.4jVD 39897 |
Copyright terms: Public domain | W3C validator |