Mathbox for Wolf Lammen |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > wl-3xorbi123d | Structured version Visualization version GIF version |
Description: Equivalence theorem for triple xor. (Contributed by Mario Carneiro, 4-Sep-2016.) df-had redefined. (Revised by Wolf Lammen, 24-Apr-2024.) |
Ref | Expression |
---|---|
wl-3xorbid.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
wl-3xorbid.2 | ⊢ (𝜑 → (𝜃 ↔ 𝜏)) |
wl-3xorbid.3 | ⊢ (𝜑 → (𝜂 ↔ 𝜁)) |
Ref | Expression |
---|---|
wl-3xorbi123d | ⊢ (𝜑 → (hadd(𝜓, 𝜃, 𝜂) ↔ hadd(𝜒, 𝜏, 𝜁))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | wl-3xorbid.1 | . . . 4 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
2 | wl-3xorbid.2 | . . . 4 ⊢ (𝜑 → (𝜃 ↔ 𝜏)) | |
3 | 1, 2 | bibi12d 345 | . . 3 ⊢ (𝜑 → ((𝜓 ↔ 𝜃) ↔ (𝜒 ↔ 𝜏))) |
4 | wl-3xorbid.3 | . . 3 ⊢ (𝜑 → (𝜂 ↔ 𝜁)) | |
5 | 3, 4 | bibi12d 345 | . 2 ⊢ (𝜑 → (((𝜓 ↔ 𝜃) ↔ 𝜂) ↔ ((𝜒 ↔ 𝜏) ↔ 𝜁))) |
6 | wl-3xorbi2 35572 | . 2 ⊢ (hadd(𝜓, 𝜃, 𝜂) ↔ ((𝜓 ↔ 𝜃) ↔ 𝜂)) | |
7 | wl-3xorbi2 35572 | . 2 ⊢ (hadd(𝜒, 𝜏, 𝜁) ↔ ((𝜒 ↔ 𝜏) ↔ 𝜁)) | |
8 | 5, 6, 7 | 3bitr4g 313 | 1 ⊢ (𝜑 → (hadd(𝜓, 𝜃, 𝜂) ↔ hadd(𝜒, 𝜏, 𝜁))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 haddwhad 1595 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-ifp 1060 df-xor 1504 df-tru 1542 df-had 1596 |
This theorem is referenced by: wl-3xorbi123i 35574 |
Copyright terms: Public domain | W3C validator |