![]() |
Mathbox for Wolf Lammen |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > wl-3xorbi2 | Structured version Visualization version GIF version |
Description: Alternative form of wl-3xorbi 36861. (Contributed by Mario Carneiro, 4-Sep-2016.) df-had redefined. (Revised by Wolf Lammen, 24-Apr-2024.) |
Ref | Expression |
---|---|
wl-3xorbi2 | ⊢ (hadd(𝜑, 𝜓, 𝜒) ↔ ((𝜑 ↔ 𝜓) ↔ 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | wl-3xorbi 36861 | . 2 ⊢ (hadd(𝜑, 𝜓, 𝜒) ↔ (𝜑 ↔ (𝜓 ↔ 𝜒))) | |
2 | biass 384 | . 2 ⊢ (((𝜑 ↔ 𝜓) ↔ 𝜒) ↔ (𝜑 ↔ (𝜓 ↔ 𝜒))) | |
3 | 1, 2 | bitr4i 278 | 1 ⊢ (hadd(𝜑, 𝜓, 𝜒) ↔ ((𝜑 ↔ 𝜓) ↔ 𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 haddwhad 1586 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-ifp 1060 df-xor 1505 df-tru 1536 df-had 1587 |
This theorem is referenced by: wl-3xorbi123d 36863 wl-3xorrot 36865 wl-3xorcoma 36866 wl-3xornot 36869 |
Copyright terms: Public domain | W3C validator |