Users' Mathboxes Mathbox for Wolf Lammen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  wl-3xorbi123i Structured version   Visualization version   GIF version

Theorem wl-3xorbi123i 35574
Description: Equivalence theorem for triple xor. Copy of hadbi123i 1598. (Contributed by Mario Carneiro, 4-Sep-2016.)
Hypotheses
Ref Expression
wl-3xorbii.1 (𝜓𝜒)
wl-3xorbii.2 (𝜃𝜏)
wl-3xorbii.3 (𝜂𝜁)
Assertion
Ref Expression
wl-3xorbi123i (hadd(𝜓, 𝜃, 𝜂) ↔ hadd(𝜒, 𝜏, 𝜁))

Proof of Theorem wl-3xorbi123i
StepHypRef Expression
1 wl-3xorbii.1 . . . 4 (𝜓𝜒)
21a1i 11 . . 3 (⊤ → (𝜓𝜒))
3 wl-3xorbii.2 . . . 4 (𝜃𝜏)
43a1i 11 . . 3 (⊤ → (𝜃𝜏))
5 wl-3xorbii.3 . . . 4 (𝜂𝜁)
65a1i 11 . . 3 (⊤ → (𝜂𝜁))
72, 4, 6wl-3xorbi123d 35573 . 2 (⊤ → (hadd(𝜓, 𝜃, 𝜂) ↔ hadd(𝜒, 𝜏, 𝜁)))
87mptru 1546 1 (hadd(𝜓, 𝜃, 𝜂) ↔ hadd(𝜒, 𝜏, 𝜁))
Colors of variables: wff setvar class
Syntax hints:  wb 205  wtru 1540  haddwhad 1595
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-ifp 1060  df-xor 1504  df-tru 1542  df-had 1596
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator