Users' Mathboxes Mathbox for Wolf Lammen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  wl-axc11rc11 Structured version   Visualization version   GIF version

Theorem wl-axc11rc11 37585
Description: Proving axc11r 2370 from axc11 2434. The hypotheses are two instances of axc11 2434 used in the proof here. Some systems introduce axc11 2434 as an axiom, see for example System S2 in https://us.metamath.org/downloads/finiteaxiom.pdf 2434.

By contrast, this database sees the variant axc11r 2370, directly derived from ax-12 2176, as foundational. Later axc11 2434 is proven somewhat trickily, requiring ax-10 2140 and ax-13 2376, see its proof. (Contributed by Wolf Lammen, 18-Jul-2023.)

Hypotheses
Ref Expression
wl-axc11rc11.1 (∀𝑦 𝑦 = 𝑥 → (∀𝑦 𝑦 = 𝑥 → ∀𝑥 𝑦 = 𝑥))
wl-axc11rc11.2 (∀𝑥 𝑥 = 𝑦 → (∀𝑥𝜑 → ∀𝑦𝜑))
Assertion
Ref Expression
wl-axc11rc11 (∀𝑦 𝑦 = 𝑥 → (∀𝑥𝜑 → ∀𝑦𝜑))

Proof of Theorem wl-axc11rc11
StepHypRef Expression
1 wl-axc11rc11.1 . . 3 (∀𝑦 𝑦 = 𝑥 → (∀𝑦 𝑦 = 𝑥 → ∀𝑥 𝑦 = 𝑥))
21pm2.43i 52 . 2 (∀𝑦 𝑦 = 𝑥 → ∀𝑥 𝑦 = 𝑥)
3 equcomi 2015 . . 3 (𝑦 = 𝑥𝑥 = 𝑦)
43alimi 1810 . 2 (∀𝑥 𝑦 = 𝑥 → ∀𝑥 𝑥 = 𝑦)
5 wl-axc11rc11.2 . 2 (∀𝑥 𝑥 = 𝑦 → (∀𝑥𝜑 → ∀𝑦𝜑))
62, 4, 53syl 18 1 (∀𝑦 𝑦 = 𝑥 → (∀𝑥𝜑 → ∀𝑦𝜑))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wal 1537
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1779
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator