Users' Mathboxes Mathbox for Wolf Lammen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  wl-axc11rc11 Structured version   Visualization version   GIF version

Theorem wl-axc11rc11 37606
Description: Proving axc11r 2371 from axc11 2435. The hypotheses are two instances of axc11 2435 used in the proof here. Some systems introduce axc11 2435 as an axiom, see for example System S2 in https://us.metamath.org/downloads/finiteaxiom.pdf 2435.

By contrast, this database sees the variant axc11r 2371, directly derived from ax-12 2178, as foundational. Later axc11 2435 is proven somewhat trickily, requiring ax-10 2142 and ax-13 2377, see its proof. (Contributed by Wolf Lammen, 18-Jul-2023.)

Hypotheses
Ref Expression
wl-axc11rc11.1 (∀𝑦 𝑦 = 𝑥 → (∀𝑦 𝑦 = 𝑥 → ∀𝑥 𝑦 = 𝑥))
wl-axc11rc11.2 (∀𝑥 𝑥 = 𝑦 → (∀𝑥𝜑 → ∀𝑦𝜑))
Assertion
Ref Expression
wl-axc11rc11 (∀𝑦 𝑦 = 𝑥 → (∀𝑥𝜑 → ∀𝑦𝜑))

Proof of Theorem wl-axc11rc11
StepHypRef Expression
1 wl-axc11rc11.1 . . 3 (∀𝑦 𝑦 = 𝑥 → (∀𝑦 𝑦 = 𝑥 → ∀𝑥 𝑦 = 𝑥))
21pm2.43i 52 . 2 (∀𝑦 𝑦 = 𝑥 → ∀𝑥 𝑦 = 𝑥)
3 equcomi 2017 . . 3 (𝑦 = 𝑥𝑥 = 𝑦)
43alimi 1811 . 2 (∀𝑥 𝑦 = 𝑥 → ∀𝑥 𝑥 = 𝑦)
5 wl-axc11rc11.2 . 2 (∀𝑥 𝑥 = 𝑦 → (∀𝑥𝜑 → ∀𝑦𝜑))
62, 4, 53syl 18 1 (∀𝑦 𝑦 = 𝑥 → (∀𝑥𝜑 → ∀𝑦𝜑))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wal 1538
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1780
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator