Users' Mathboxes Mathbox for Wolf Lammen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  wl-axc11rc11 Structured version   Visualization version   GIF version

Theorem wl-axc11rc11 35734
Description: Proving axc11r 2366 from axc11 2430. The hypotheses are two instances of axc11 2430 used in the proof here. Some systems introduce axc11 2430 as an axiom, see for example System S2 in https://us.metamath.org/downloads/finiteaxiom.pdf 2430.

By contrast, this database sees the variant axc11r 2366, directly derived from ax-12 2171, as foundational. Later axc11 2430 is proven somewhat trickily, requiring ax-10 2137 and ax-13 2372, see its proof. (Contributed by Wolf Lammen, 18-Jul-2023.)

Hypotheses
Ref Expression
wl-axc11rc11.1 (∀𝑦 𝑦 = 𝑥 → (∀𝑦 𝑦 = 𝑥 → ∀𝑥 𝑦 = 𝑥))
wl-axc11rc11.2 (∀𝑥 𝑥 = 𝑦 → (∀𝑥𝜑 → ∀𝑦𝜑))
Assertion
Ref Expression
wl-axc11rc11 (∀𝑦 𝑦 = 𝑥 → (∀𝑥𝜑 → ∀𝑦𝜑))

Proof of Theorem wl-axc11rc11
StepHypRef Expression
1 wl-axc11rc11.1 . . 3 (∀𝑦 𝑦 = 𝑥 → (∀𝑦 𝑦 = 𝑥 → ∀𝑥 𝑦 = 𝑥))
21pm2.43i 52 . 2 (∀𝑦 𝑦 = 𝑥 → ∀𝑥 𝑦 = 𝑥)
3 equcomi 2020 . . 3 (𝑦 = 𝑥𝑥 = 𝑦)
43alimi 1814 . 2 (∀𝑥 𝑦 = 𝑥 → ∀𝑥 𝑥 = 𝑦)
5 wl-axc11rc11.2 . 2 (∀𝑥 𝑥 = 𝑦 → (∀𝑥𝜑 → ∀𝑦𝜑))
62, 4, 53syl 18 1 (∀𝑦 𝑦 = 𝑥 → (∀𝑥𝜑 → ∀𝑦𝜑))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wal 1537
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011
This theorem depends on definitions:  df-bi 206  df-an 397  df-ex 1783
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator