Users' Mathboxes Mathbox for Wolf Lammen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  wl-axc11rc11 Structured version   Visualization version   GIF version

Theorem wl-axc11rc11 37564
Description: Proving axc11r 2369 from axc11 2433. The hypotheses are two instances of axc11 2433 used in the proof here. Some systems introduce axc11 2433 as an axiom, see for example System S2 in https://us.metamath.org/downloads/finiteaxiom.pdf 2433.

By contrast, this database sees the variant axc11r 2369, directly derived from ax-12 2175, as foundational. Later axc11 2433 is proven somewhat trickily, requiring ax-10 2139 and ax-13 2375, see its proof. (Contributed by Wolf Lammen, 18-Jul-2023.)

Hypotheses
Ref Expression
wl-axc11rc11.1 (∀𝑦 𝑦 = 𝑥 → (∀𝑦 𝑦 = 𝑥 → ∀𝑥 𝑦 = 𝑥))
wl-axc11rc11.2 (∀𝑥 𝑥 = 𝑦 → (∀𝑥𝜑 → ∀𝑦𝜑))
Assertion
Ref Expression
wl-axc11rc11 (∀𝑦 𝑦 = 𝑥 → (∀𝑥𝜑 → ∀𝑦𝜑))

Proof of Theorem wl-axc11rc11
StepHypRef Expression
1 wl-axc11rc11.1 . . 3 (∀𝑦 𝑦 = 𝑥 → (∀𝑦 𝑦 = 𝑥 → ∀𝑥 𝑦 = 𝑥))
21pm2.43i 52 . 2 (∀𝑦 𝑦 = 𝑥 → ∀𝑥 𝑦 = 𝑥)
3 equcomi 2014 . . 3 (𝑦 = 𝑥𝑥 = 𝑦)
43alimi 1808 . 2 (∀𝑥 𝑦 = 𝑥 → ∀𝑥 𝑥 = 𝑦)
5 wl-axc11rc11.2 . 2 (∀𝑥 𝑥 = 𝑦 → (∀𝑥𝜑 → ∀𝑦𝜑))
62, 4, 53syl 18 1 (∀𝑦 𝑦 = 𝑥 → (∀𝑥𝜑 → ∀𝑦𝜑))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wal 1535
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1777
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator