MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  axc11r Structured version   Visualization version   GIF version

Theorem axc11r 2367
Description: Same as axc11 2429 but with reversed antecedent. Note the use of ax-12 2178 (and not merely ax12v 2179 as in axc11rv 2266).

This theorem is mostly used to eliminate conditions requiring set variables be distinct (cf. cbvaev 2054 and aecom 2426, for example) in proofs. In practice, theorems beyond elementary set theory do not really benefit from such eliminations. As of 2024, it is used in conjunction with ax-13 2371 only, and like that, it should be applied only in niches where indispensable. (Contributed by NM, 25-Jul-2015.)

Assertion
Ref Expression
axc11r (∀𝑦 𝑦 = 𝑥 → (∀𝑥𝜑 → ∀𝑦𝜑))

Proof of Theorem axc11r
StepHypRef Expression
1 ax-12 2178 . . 3 (𝑦 = 𝑥 → (∀𝑥𝜑 → ∀𝑦(𝑦 = 𝑥𝜑)))
21sps 2186 . 2 (∀𝑦 𝑦 = 𝑥 → (∀𝑥𝜑 → ∀𝑦(𝑦 = 𝑥𝜑)))
3 pm2.27 42 . . 3 (𝑦 = 𝑥 → ((𝑦 = 𝑥𝜑) → 𝜑))
43al2imi 1815 . 2 (∀𝑦 𝑦 = 𝑥 → (∀𝑦(𝑦 = 𝑥𝜑) → ∀𝑦𝜑))
52, 4syld 47 1 (∀𝑦 𝑦 = 𝑥 → (∀𝑥𝜑 → ∀𝑦𝜑))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wal 1538
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-12 2178
This theorem depends on definitions:  df-bi 207  df-ex 1780
This theorem is referenced by:  ax12  2422  axc11n  2425  axc11  2429  hbae  2430  dral1  2438  dral1ALT  2439  sb4a  2479  axpowndlem3  10559  axc11n11r  36678  bj-ax12v3ALT  36681  bj-hbaeb2  36813
  Copyright terms: Public domain W3C validator