![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > axc11r | Structured version Visualization version GIF version |
Description: Same as axc11 2438 but with reversed antecedent. Note the use
of ax-12 2178
(and not merely ax12v 2179 as in axc11rv 2266).
This theorem is mostly used to eliminate conditions requiring set variables be distinct (cf. cbvaev 2053 and aecom 2435, for example) in proofs. In practice, theorems beyond elementary set theory do not really benefit from such eliminations. As of 2024, it is used in conjunction with ax-13 2380 only, and like that, it should be applied only in niches where indispensable. (Contributed by NM, 25-Jul-2015.) |
Ref | Expression |
---|---|
axc11r | ⊢ (∀𝑦 𝑦 = 𝑥 → (∀𝑥𝜑 → ∀𝑦𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-12 2178 | . . 3 ⊢ (𝑦 = 𝑥 → (∀𝑥𝜑 → ∀𝑦(𝑦 = 𝑥 → 𝜑))) | |
2 | 1 | sps 2186 | . 2 ⊢ (∀𝑦 𝑦 = 𝑥 → (∀𝑥𝜑 → ∀𝑦(𝑦 = 𝑥 → 𝜑))) |
3 | pm2.27 42 | . . 3 ⊢ (𝑦 = 𝑥 → ((𝑦 = 𝑥 → 𝜑) → 𝜑)) | |
4 | 3 | al2imi 1813 | . 2 ⊢ (∀𝑦 𝑦 = 𝑥 → (∀𝑦(𝑦 = 𝑥 → 𝜑) → ∀𝑦𝜑)) |
5 | 2, 4 | syld 47 | 1 ⊢ (∀𝑦 𝑦 = 𝑥 → (∀𝑥𝜑 → ∀𝑦𝜑)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∀wal 1535 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-12 2178 |
This theorem depends on definitions: df-bi 207 df-ex 1778 |
This theorem is referenced by: ax12 2431 axc11n 2434 axc11 2438 hbae 2439 dral1 2447 dral1ALT 2448 sb4a 2488 axpowndlem3 10668 axc11n11r 36649 bj-ax12v3ALT 36652 bj-hbaeb2 36784 |
Copyright terms: Public domain | W3C validator |