MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  axc11r Structured version   Visualization version   GIF version

Theorem axc11r 2298
Description: Same as axc11 2364 but with reversed antecedent. Note the use of ax-12 2104 (and not merely ax12v 2105 as in axc11rv 2190). (Contributed by NM, 25-Jul-2015.)
Assertion
Ref Expression
axc11r (∀𝑦 𝑦 = 𝑥 → (∀𝑥𝜑 → ∀𝑦𝜑))

Proof of Theorem axc11r
StepHypRef Expression
1 ax-12 2104 . . 3 (𝑦 = 𝑥 → (∀𝑥𝜑 → ∀𝑦(𝑦 = 𝑥𝜑)))
21sps 2111 . 2 (∀𝑦 𝑦 = 𝑥 → (∀𝑥𝜑 → ∀𝑦(𝑦 = 𝑥𝜑)))
3 pm2.27 42 . . 3 (𝑦 = 𝑥 → ((𝑦 = 𝑥𝜑) → 𝜑))
43al2imi 1778 . 2 (∀𝑦 𝑦 = 𝑥 → (∀𝑦(𝑦 = 𝑥𝜑) → ∀𝑦𝜑))
52, 4syld 47 1 (∀𝑦 𝑦 = 𝑥 → (∀𝑥𝜑 → ∀𝑦𝜑))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wal 1505
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1758  ax-4 1772  ax-5 1869  ax-6 1928  ax-7 1964  ax-12 2104
This theorem depends on definitions:  df-bi 199  df-ex 1743
This theorem is referenced by:  ax12  2357  axc11n  2360  axc11  2364  hbae  2365  dral1  2373  dral1ALT  2374  sb4a  2427  axpowndlem3  9811  axc11n11r  33466  bj-ax12v3ALT  33469  bj-axc11v  33532  bj-dral1v  33533  bj-hbaeb2  33572
  Copyright terms: Public domain W3C validator