| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > equcomi | Structured version Visualization version GIF version | ||
| Description: Commutative law for equality. Equality is a symmetric relation. Lemma 3 of [KalishMontague] p. 85. See also Lemma 7 of [Tarski] p. 69. (Contributed by NM, 10-Jan-1993.) (Revised by NM, 9-Apr-2017.) |
| Ref | Expression |
|---|---|
| equcomi | ⊢ (𝑥 = 𝑦 → 𝑦 = 𝑥) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | equid 2012 | . 2 ⊢ 𝑥 = 𝑥 | |
| 2 | ax7 2016 | . 2 ⊢ (𝑥 = 𝑦 → (𝑥 = 𝑥 → 𝑦 = 𝑥)) | |
| 3 | 1, 2 | mpi 20 | 1 ⊢ (𝑥 = 𝑦 → 𝑦 = 𝑥) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 |
| This theorem is referenced by: equcom 2018 equcoms 2020 ax13dgen2 2139 sbequ2 2250 cbv2w 2335 cbv2 2401 cbv2h 2404 axc16i 2434 equvini 2453 equsb2 2490 axsepgfromrep 5244 rext 5403 dfid2 5528 soxp 8085 xpord3inddlem 8110 axextnd 10520 prodmo 15878 mpomatmul 22309 cbvex1v 35037 finminlem 36279 bj-ssbid2ALT 36624 axc11n11 36643 axc11n11r 36644 bj-cbv2hv 36758 ax6er 36794 bj-dfid2ALT 37026 bj-imdiridlem 37146 wl-axc11rc11 37544 poimirlem25 37612 axc11nfromc11 38892 aev-o 38897 oppcendc 48980 |
| Copyright terms: Public domain | W3C validator |