MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  equcomi Structured version   Visualization version   GIF version

Theorem equcomi 2123
Description: Commutative law for equality. Equality is a symmetric relation. Lemma 3 of [KalishMontague] p. 85. See also Lemma 7 of [Tarski] p. 69. (Contributed by NM, 10-Jan-1993.) (Revised by NM, 9-Apr-2017.)
Assertion
Ref Expression
equcomi (𝑥 = 𝑦𝑦 = 𝑥)

Proof of Theorem equcomi
StepHypRef Expression
1 equid 2118 . 2 𝑥 = 𝑥
2 ax7 2122 . 2 (𝑥 = 𝑦 → (𝑥 = 𝑥𝑦 = 𝑥))
31, 2mpi 20 1 (𝑥 = 𝑦𝑦 = 𝑥)
Colors of variables: wff setvar class
Syntax hints:  wi 4
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1896  ax-4 1910  ax-5 2011  ax-6 2077  ax-7 2114
This theorem depends on definitions:  df-bi 199  df-an 387  df-ex 1881
This theorem is referenced by:  equcom  2124  equcoms  2126  ax13dgen2  2191  cbv2h  2423  axc16i  2458  equsb2  2501  axsep  5005  rext  5138  soxp  7555  axextnd  9729  prodmo  15040  mpt2matmul  20621  finminlem  32852  bj-ssbid2ALT  33183  axc11n11  33208  axc11n11r  33209  bj-cbv2hv  33265  bj-axsep  33319  ax6er  33345  poimirlem25  33979  axc11nfromc11  35002  aev-o  35007
  Copyright terms: Public domain W3C validator