Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > equcomi | Structured version Visualization version GIF version |
Description: Commutative law for equality. Equality is a symmetric relation. Lemma 3 of [KalishMontague] p. 85. See also Lemma 7 of [Tarski] p. 69. (Contributed by NM, 10-Jan-1993.) (Revised by NM, 9-Apr-2017.) |
Ref | Expression |
---|---|
equcomi | ⊢ (𝑥 = 𝑦 → 𝑦 = 𝑥) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | equid 2015 | . 2 ⊢ 𝑥 = 𝑥 | |
2 | ax7 2019 | . 2 ⊢ (𝑥 = 𝑦 → (𝑥 = 𝑥 → 𝑦 = 𝑥)) | |
3 | 1, 2 | mpi 20 | 1 ⊢ (𝑥 = 𝑦 → 𝑦 = 𝑥) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 |
This theorem depends on definitions: df-bi 206 df-an 398 df-ex 1782 |
This theorem is referenced by: equcom 2021 equcoms 2023 ax13dgen2 2134 sbequ2 2241 sbequ2OLD 2242 cbv2w 2334 cbv2 2402 cbv2h 2405 axc16i 2435 equvini 2454 equsb2 2495 vtoclgft 3505 axsepgfromrep 5246 rext 5398 dfid2 5525 soxp 8042 axextnd 10453 prodmo 15746 mpomatmul 21701 finminlem 34644 bj-ssbid2ALT 34981 axc11n11 35001 axc11n11r 35002 bj-cbv2hv 35116 ax6er 35152 bj-dfid2ALT 35390 bj-imdiridlem 35510 wl-axc11rc11 35888 poimirlem25 35956 axc11nfromc11 37242 aev-o 37247 |
Copyright terms: Public domain | W3C validator |