| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > equcomi | Structured version Visualization version GIF version | ||
| Description: Commutative law for equality. Equality is a symmetric relation. Lemma 3 of [KalishMontague] p. 85. See also Lemma 7 of [Tarski] p. 69. (Contributed by NM, 10-Jan-1993.) (Revised by NM, 9-Apr-2017.) |
| Ref | Expression |
|---|---|
| equcomi | ⊢ (𝑥 = 𝑦 → 𝑦 = 𝑥) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | equid 2011 | . 2 ⊢ 𝑥 = 𝑥 | |
| 2 | ax7 2015 | . 2 ⊢ (𝑥 = 𝑦 → (𝑥 = 𝑥 → 𝑦 = 𝑥)) | |
| 3 | 1, 2 | mpi 20 | 1 ⊢ (𝑥 = 𝑦 → 𝑦 = 𝑥) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 |
| This theorem is referenced by: equcom 2017 equcoms 2019 ax13dgen2 2138 sbequ2 2249 cbv2w 2338 cbv2 2407 cbv2h 2410 axc16i 2440 equvini 2459 equsb2 2496 axsepgfromrep 5264 rext 5423 dfid2 5550 soxp 8128 xpord3inddlem 8153 axextnd 10605 prodmo 15952 mpomatmul 22384 cbvex1v 35105 finminlem 36336 bj-ssbid2ALT 36681 axc11n11 36700 axc11n11r 36701 bj-cbv2hv 36815 ax6er 36851 bj-dfid2ALT 37083 bj-imdiridlem 37203 wl-axc11rc11 37601 poimirlem25 37669 axc11nfromc11 38944 aev-o 38949 oppcendc 48993 |
| Copyright terms: Public domain | W3C validator |