![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > equcomi | Structured version Visualization version GIF version |
Description: Commutative law for equality. Equality is a symmetric relation. Lemma 3 of [KalishMontague] p. 85. See also Lemma 7 of [Tarski] p. 69. (Contributed by NM, 10-Jan-1993.) (Revised by NM, 9-Apr-2017.) |
Ref | Expression |
---|---|
equcomi | ⊢ (𝑥 = 𝑦 → 𝑦 = 𝑥) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | equid 2011 | . 2 ⊢ 𝑥 = 𝑥 | |
2 | ax7 2015 | . 2 ⊢ (𝑥 = 𝑦 → (𝑥 = 𝑥 → 𝑦 = 𝑥)) | |
3 | 1, 2 | mpi 20 | 1 ⊢ (𝑥 = 𝑦 → 𝑦 = 𝑥) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 |
This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1778 |
This theorem is referenced by: equcom 2017 equcoms 2019 ax13dgen2 2138 sbequ2 2250 cbv2w 2343 cbv2 2411 cbv2h 2414 axc16i 2444 equvini 2463 equsb2 2500 axsepgfromrep 5315 rext 5468 dfid2 5595 soxp 8170 xpord3inddlem 8195 axextnd 10660 prodmo 15984 mpomatmul 22473 cbvex1v 35050 finminlem 36284 bj-ssbid2ALT 36629 axc11n11 36648 axc11n11r 36649 bj-cbv2hv 36763 ax6er 36799 bj-dfid2ALT 37031 bj-imdiridlem 37151 wl-axc11rc11 37537 poimirlem25 37605 axc11nfromc11 38882 aev-o 38887 |
Copyright terms: Public domain | W3C validator |