| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > equcomi | Structured version Visualization version GIF version | ||
| Description: Commutative law for equality. Equality is a symmetric relation. Lemma 3 of [KalishMontague] p. 85. See also Lemma 7 of [Tarski] p. 69. (Contributed by NM, 10-Jan-1993.) (Revised by NM, 9-Apr-2017.) |
| Ref | Expression |
|---|---|
| equcomi | ⊢ (𝑥 = 𝑦 → 𝑦 = 𝑥) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | equid 2012 | . 2 ⊢ 𝑥 = 𝑥 | |
| 2 | ax7 2016 | . 2 ⊢ (𝑥 = 𝑦 → (𝑥 = 𝑥 → 𝑦 = 𝑥)) | |
| 3 | 1, 2 | mpi 20 | 1 ⊢ (𝑥 = 𝑦 → 𝑦 = 𝑥) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 |
| This theorem is referenced by: equcom 2018 equcoms 2020 ax13dgen2 2139 sbequ2 2250 cbv2w 2335 cbv2 2402 cbv2h 2405 axc16i 2435 equvini 2454 equsb2 2491 axsepgfromrep 5252 rext 5411 dfid2 5538 soxp 8111 xpord3inddlem 8136 axextnd 10551 prodmo 15909 mpomatmul 22340 cbvex1v 35071 finminlem 36313 bj-ssbid2ALT 36658 axc11n11 36677 axc11n11r 36678 bj-cbv2hv 36792 ax6er 36828 bj-dfid2ALT 37060 bj-imdiridlem 37180 wl-axc11rc11 37578 poimirlem25 37646 axc11nfromc11 38926 aev-o 38931 oppcendc 49011 |
| Copyright terms: Public domain | W3C validator |