![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > equcomi | Structured version Visualization version GIF version |
Description: Commutative law for equality. Equality is a symmetric relation. Lemma 3 of [KalishMontague] p. 85. See also Lemma 7 of [Tarski] p. 69. (Contributed by NM, 10-Jan-1993.) (Revised by NM, 9-Apr-2017.) |
Ref | Expression |
---|---|
equcomi | ⊢ (𝑥 = 𝑦 → 𝑦 = 𝑥) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | equid 2118 | . 2 ⊢ 𝑥 = 𝑥 | |
2 | ax7 2122 | . 2 ⊢ (𝑥 = 𝑦 → (𝑥 = 𝑥 → 𝑦 = 𝑥)) | |
3 | 1, 2 | mpi 20 | 1 ⊢ (𝑥 = 𝑦 → 𝑦 = 𝑥) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1896 ax-4 1910 ax-5 2011 ax-6 2077 ax-7 2114 |
This theorem depends on definitions: df-bi 199 df-an 387 df-ex 1881 |
This theorem is referenced by: equcom 2124 equcoms 2126 ax13dgen2 2191 cbv2h 2423 axc16i 2458 equsb2 2501 axsep 5005 rext 5138 soxp 7555 axextnd 9729 prodmo 15040 mpt2matmul 20621 finminlem 32852 bj-ssbid2ALT 33183 axc11n11 33208 axc11n11r 33209 bj-cbv2hv 33265 bj-axsep 33319 ax6er 33345 poimirlem25 33979 axc11nfromc11 35002 aev-o 35007 |
Copyright terms: Public domain | W3C validator |