Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > equcomi | Structured version Visualization version GIF version |
Description: Commutative law for equality. Equality is a symmetric relation. Lemma 3 of [KalishMontague] p. 85. See also Lemma 7 of [Tarski] p. 69. (Contributed by NM, 10-Jan-1993.) (Revised by NM, 9-Apr-2017.) |
Ref | Expression |
---|---|
equcomi | ⊢ (𝑥 = 𝑦 → 𝑦 = 𝑥) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | equid 2016 | . 2 ⊢ 𝑥 = 𝑥 | |
2 | ax7 2020 | . 2 ⊢ (𝑥 = 𝑦 → (𝑥 = 𝑥 → 𝑦 = 𝑥)) | |
3 | 1, 2 | mpi 20 | 1 ⊢ (𝑥 = 𝑦 → 𝑦 = 𝑥) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 |
This theorem depends on definitions: df-bi 206 df-an 396 df-ex 1784 |
This theorem is referenced by: equcom 2022 equcoms 2024 ax13dgen2 2136 sbequ2 2244 sbequ2OLD 2245 cbv2w 2336 cbv2 2403 cbv2h 2406 axc16i 2436 equvini 2455 equsb2 2496 vtoclgft 3482 axsepgfromrep 5216 rext 5358 dfid2 5482 soxp 7941 axextnd 10278 prodmo 15574 mpomatmul 21503 finminlem 34434 bj-ssbid2ALT 34771 axc11n11 34791 axc11n11r 34792 bj-cbv2hv 34906 ax6er 34943 bj-dfid2ALT 35163 bj-imdiridlem 35283 wl-axc11rc11 35661 poimirlem25 35729 axc11nfromc11 36867 aev-o 36872 |
Copyright terms: Public domain | W3C validator |