| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > equcomi | Structured version Visualization version GIF version | ||
| Description: Commutative law for equality. Equality is a symmetric relation. Lemma 3 of [KalishMontague] p. 85. See also Lemma 7 of [Tarski] p. 69. (Contributed by NM, 10-Jan-1993.) (Revised by NM, 9-Apr-2017.) |
| Ref | Expression |
|---|---|
| equcomi | ⊢ (𝑥 = 𝑦 → 𝑦 = 𝑥) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | equid 2013 | . 2 ⊢ 𝑥 = 𝑥 | |
| 2 | ax7 2017 | . 2 ⊢ (𝑥 = 𝑦 → (𝑥 = 𝑥 → 𝑦 = 𝑥)) | |
| 3 | 1, 2 | mpi 20 | 1 ⊢ (𝑥 = 𝑦 → 𝑦 = 𝑥) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1781 |
| This theorem is referenced by: equcom 2019 equcoms 2021 ax13dgen2 2143 sbequ2 2254 cbv2w 2339 cbv2 2405 cbv2h 2408 axc16i 2438 equvini 2457 equsb2 2494 axsepgfromrep 5236 rext 5393 dfid2 5518 soxp 8068 xpord3inddlem 8093 axextnd 10493 prodmo 15850 mpomatmul 22381 cbvex1v 35158 finminlem 36434 bj-ssbid2ALT 36780 axc11n11 36799 axc11n11r 36800 bj-cbv2hv 36914 ax6er 36950 bj-dfid2ALT 37182 bj-imdiridlem 37302 wl-axc11rc11 37700 poimirlem25 37758 axc11nfromc11 39098 aev-o 39103 oppcendc 49179 |
| Copyright terms: Public domain | W3C validator |