| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > equcomi | Structured version Visualization version GIF version | ||
| Description: Commutative law for equality. Equality is a symmetric relation. Lemma 3 of [KalishMontague] p. 85. See also Lemma 7 of [Tarski] p. 69. (Contributed by NM, 10-Jan-1993.) (Revised by NM, 9-Apr-2017.) |
| Ref | Expression |
|---|---|
| equcomi | ⊢ (𝑥 = 𝑦 → 𝑦 = 𝑥) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | equid 2012 | . 2 ⊢ 𝑥 = 𝑥 | |
| 2 | ax7 2016 | . 2 ⊢ (𝑥 = 𝑦 → (𝑥 = 𝑥 → 𝑦 = 𝑥)) | |
| 3 | 1, 2 | mpi 20 | 1 ⊢ (𝑥 = 𝑦 → 𝑦 = 𝑥) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 |
| This theorem is referenced by: equcom 2018 equcoms 2020 ax13dgen2 2139 sbequ2 2250 cbv2w 2335 cbv2 2401 cbv2h 2404 axc16i 2434 equvini 2453 equsb2 2490 axsepgfromrep 5249 rext 5408 dfid2 5535 soxp 8108 xpord3inddlem 8133 axextnd 10544 prodmo 15902 mpomatmul 22333 cbvex1v 35064 finminlem 36306 bj-ssbid2ALT 36651 axc11n11 36670 axc11n11r 36671 bj-cbv2hv 36785 ax6er 36821 bj-dfid2ALT 37053 bj-imdiridlem 37173 wl-axc11rc11 37571 poimirlem25 37639 axc11nfromc11 38919 aev-o 38924 oppcendc 49007 |
| Copyright terms: Public domain | W3C validator |