| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > equcomi | Structured version Visualization version GIF version | ||
| Description: Commutative law for equality. Equality is a symmetric relation. Lemma 3 of [KalishMontague] p. 85. See also Lemma 7 of [Tarski] p. 69. (Contributed by NM, 10-Jan-1993.) (Revised by NM, 9-Apr-2017.) |
| Ref | Expression |
|---|---|
| equcomi | ⊢ (𝑥 = 𝑦 → 𝑦 = 𝑥) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | equid 2012 | . 2 ⊢ 𝑥 = 𝑥 | |
| 2 | ax7 2016 | . 2 ⊢ (𝑥 = 𝑦 → (𝑥 = 𝑥 → 𝑦 = 𝑥)) | |
| 3 | 1, 2 | mpi 20 | 1 ⊢ (𝑥 = 𝑦 → 𝑦 = 𝑥) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 |
| This theorem is referenced by: equcom 2018 equcoms 2020 ax13dgen2 2139 sbequ2 2250 cbv2w 2335 cbv2 2401 cbv2h 2404 axc16i 2434 equvini 2453 equsb2 2490 axsepgfromrep 5236 rext 5395 dfid2 5520 soxp 8069 xpord3inddlem 8094 axextnd 10504 prodmo 15862 mpomatmul 22350 cbvex1v 35060 finminlem 36311 bj-ssbid2ALT 36656 axc11n11 36675 axc11n11r 36676 bj-cbv2hv 36790 ax6er 36826 bj-dfid2ALT 37058 bj-imdiridlem 37178 wl-axc11rc11 37576 poimirlem25 37644 axc11nfromc11 38924 aev-o 38929 oppcendc 49023 |
| Copyright terms: Public domain | W3C validator |