| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > equcomi | Structured version Visualization version GIF version | ||
| Description: Commutative law for equality. Equality is a symmetric relation. Lemma 3 of [KalishMontague] p. 85. See also Lemma 7 of [Tarski] p. 69. (Contributed by NM, 10-Jan-1993.) (Revised by NM, 9-Apr-2017.) |
| Ref | Expression |
|---|---|
| equcomi | ⊢ (𝑥 = 𝑦 → 𝑦 = 𝑥) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | equid 2013 | . 2 ⊢ 𝑥 = 𝑥 | |
| 2 | ax7 2017 | . 2 ⊢ (𝑥 = 𝑦 → (𝑥 = 𝑥 → 𝑦 = 𝑥)) | |
| 3 | 1, 2 | mpi 20 | 1 ⊢ (𝑥 = 𝑦 → 𝑦 = 𝑥) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1781 |
| This theorem is referenced by: equcom 2019 equcoms 2021 ax13dgen2 2141 sbequ2 2252 cbv2w 2337 cbv2 2403 cbv2h 2406 axc16i 2436 equvini 2455 equsb2 2492 axsepgfromrep 5227 rext 5384 dfid2 5508 soxp 8054 xpord3inddlem 8079 axextnd 10477 prodmo 15838 mpomatmul 22356 cbvex1v 35078 finminlem 36352 bj-ssbid2ALT 36697 axc11n11 36716 axc11n11r 36717 bj-cbv2hv 36831 ax6er 36867 bj-dfid2ALT 37099 bj-imdiridlem 37219 wl-axc11rc11 37617 poimirlem25 37685 axc11nfromc11 38965 aev-o 38970 oppcendc 49050 |
| Copyright terms: Public domain | W3C validator |