MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  axc11 Structured version   Visualization version   GIF version

Theorem axc11 2396
Description: Show that ax-c11 35041 can be derived from ax-c11n 35042 in the form of axc11n 2392. Normally, axc11 2396 should be used rather than ax-c11 35041, except by theorems specifically studying the latter's properties. (Contributed by NM, 16-May-2008.) (Proof shortened by Wolf Lammen, 21-Apr-2018.)
Assertion
Ref Expression
axc11 (∀𝑥 𝑥 = 𝑦 → (∀𝑥𝜑 → ∀𝑦𝜑))

Proof of Theorem axc11
StepHypRef Expression
1 axc11r 2333 . 2 (∀𝑦 𝑦 = 𝑥 → (∀𝑥𝜑 → ∀𝑦𝜑))
21aecoms 2394 1 (∀𝑥 𝑥 = 𝑦 → (∀𝑥𝜑 → ∀𝑦𝜑))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wal 1599
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2055  ax-10 2135  ax-12 2163  ax-13 2334
This theorem depends on definitions:  df-bi 199  df-an 387  df-ex 1824  df-nf 1828
This theorem is referenced by:  hbae  2397  dral1  2405  dral1ALT  2406  nd1  9744  nd2  9745  axc11n11  33261  bj-hbaeb2  33380  wl-aetr  33911  ax6e2eq  39717  ax6e2eqVD  40076  2sb5ndVD  40079  2sb5ndALT  40101
  Copyright terms: Public domain W3C validator