MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  axc11 Structured version   Visualization version   GIF version

Theorem axc11 2429
Description: Show that ax-c11 38887 can be derived from ax-c11n 38888 in the form of axc11n 2425. Normally, axc11 2429 should be used rather than ax-c11 38887, except by theorems specifically studying the latter's properties. Usage of this theorem is discouraged because it depends on ax-13 2371. Use the weaker axc11v 2265 when possible. (Contributed by NM, 16-May-2008.) (Proof shortened by Wolf Lammen, 21-Apr-2018.) (New usage is discouraged.)
Assertion
Ref Expression
axc11 (∀𝑥 𝑥 = 𝑦 → (∀𝑥𝜑 → ∀𝑦𝜑))

Proof of Theorem axc11
StepHypRef Expression
1 axc11r 2367 . 2 (∀𝑦 𝑦 = 𝑥 → (∀𝑥𝜑 → ∀𝑦𝜑))
21aecoms 2427 1 (∀𝑥 𝑥 = 𝑦 → (∀𝑥𝜑 → ∀𝑦𝜑))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wal 1538
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-10 2142  ax-12 2178  ax-13 2371
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1780  df-nf 1784
This theorem is referenced by:  hbae  2430  dral1  2438  dral1ALT  2439  nd1  10547  nd2  10548  axc11n11  36677  bj-hbaeb2  36813  wl-aetr  37524  ax6e2eq  44554  ax6e2eqVD  44903  2sb5ndVD  44906  2sb5ndALT  44928
  Copyright terms: Public domain W3C validator