MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  axc11 Structured version   Visualization version   GIF version

Theorem axc11 2432
Description: Show that ax-c11 38868 can be derived from ax-c11n 38869 in the form of axc11n 2428. Normally, axc11 2432 should be used rather than ax-c11 38868, except by theorems specifically studying the latter's properties. Usage of this theorem is discouraged because it depends on ax-13 2374. Use the weaker axc11v 2261 when possible. (Contributed by NM, 16-May-2008.) (Proof shortened by Wolf Lammen, 21-Apr-2018.) (New usage is discouraged.)
Assertion
Ref Expression
axc11 (∀𝑥 𝑥 = 𝑦 → (∀𝑥𝜑 → ∀𝑦𝜑))

Proof of Theorem axc11
StepHypRef Expression
1 axc11r 2368 . 2 (∀𝑦 𝑦 = 𝑥 → (∀𝑥𝜑 → ∀𝑦𝜑))
21aecoms 2430 1 (∀𝑥 𝑥 = 𝑦 → (∀𝑥𝜑 → ∀𝑦𝜑))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wal 1534
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1791  ax-4 1805  ax-5 1907  ax-6 1964  ax-7 2004  ax-10 2138  ax-12 2174  ax-13 2374
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1776  df-nf 1780
This theorem is referenced by:  hbae  2433  dral1  2441  dral1ALT  2442  nd1  10624  nd2  10625  axc11n11  36664  bj-hbaeb2  36800  wl-aetr  37509  ax6e2eq  44554  ax6e2eqVD  44904  2sb5ndVD  44907  2sb5ndALT  44929
  Copyright terms: Public domain W3C validator