![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > axc11 | Structured version Visualization version GIF version |
Description: Show that ax-c11 35041 can be derived from ax-c11n 35042 in the form of axc11n 2392. Normally, axc11 2396 should be used rather than ax-c11 35041, except by theorems specifically studying the latter's properties. (Contributed by NM, 16-May-2008.) (Proof shortened by Wolf Lammen, 21-Apr-2018.) |
Ref | Expression |
---|---|
axc11 | ⊢ (∀𝑥 𝑥 = 𝑦 → (∀𝑥𝜑 → ∀𝑦𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | axc11r 2333 | . 2 ⊢ (∀𝑦 𝑦 = 𝑥 → (∀𝑥𝜑 → ∀𝑦𝜑)) | |
2 | 1 | aecoms 2394 | 1 ⊢ (∀𝑥 𝑥 = 𝑦 → (∀𝑥𝜑 → ∀𝑦𝜑)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∀wal 1599 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1839 ax-4 1853 ax-5 1953 ax-6 2021 ax-7 2055 ax-10 2135 ax-12 2163 ax-13 2334 |
This theorem depends on definitions: df-bi 199 df-an 387 df-ex 1824 df-nf 1828 |
This theorem is referenced by: hbae 2397 dral1 2405 dral1ALT 2406 nd1 9744 nd2 9745 axc11n11 33261 bj-hbaeb2 33380 wl-aetr 33911 ax6e2eq 39717 ax6e2eqVD 40076 2sb5ndVD 40079 2sb5ndALT 40101 |
Copyright terms: Public domain | W3C validator |