Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 3imtr4i | Structured version Visualization version GIF version |
Description: A mixed syllogism inference, useful for applying a definition to both sides of an implication. (Contributed by NM, 3-Jan-1993.) |
Ref | Expression |
---|---|
3imtr4.1 | ⊢ (𝜑 → 𝜓) |
3imtr4.2 | ⊢ (𝜒 ↔ 𝜑) |
3imtr4.3 | ⊢ (𝜃 ↔ 𝜓) |
Ref | Expression |
---|---|
3imtr4i | ⊢ (𝜒 → 𝜃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3imtr4.2 | . . 3 ⊢ (𝜒 ↔ 𝜑) | |
2 | 3imtr4.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
3 | 1, 2 | sylbi 216 | . 2 ⊢ (𝜒 → 𝜓) |
4 | 3imtr4.3 | . 2 ⊢ (𝜃 ↔ 𝜓) | |
5 | 3, 4 | sylibr 233 | 1 ⊢ (𝜒 → 𝜃) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 |
This theorem is referenced by: norassOLD 1536 hbxfrbi 1828 nexmo 2541 moimi 2545 eu6im 2575 ralimi2 3083 rexbiOLD 3170 reximi2 3171 elex 3440 rmoan 3669 rmoimi2 3673 reuan 3825 sseq2 3943 rabss2 4007 n0rex 4285 undif4 4397 r19.2zb 4423 rzal 4436 difprsnss 4729 snsspw 4772 uniin 4862 iuniin 4933 iuneq1 4937 iuneq2 4940 iunpwss 5032 axrep6 5212 eunex 5308 rmorabex 5369 exss 5372 pwunssOLD 5475 soeq2 5516 elopaelxp 5667 reliin 5716 coeq1 5755 coeq2 5756 cnveq 5771 dmeq 5801 dmin 5809 dmcoss 5869 rncoeq 5873 dminss 6045 imainss 6046 dfco2a 6139 iotaex 6398 fundif 6467 fununi 6493 fof 6672 f1ocnv 6712 foco2 6965 isocnv 7181 isotr 7187 oprabidw 7286 oprabid 7287 zfrep6 7771 ovmptss 7904 dmtpos 8025 tposfn 8042 smores 8154 omopthlem1 8449 eqer 8491 fsetsspwxp 8599 ixpeq2 8657 enssdom 8720 fiprc 8789 sbthlem9 8831 infensuc 8891 fipwuni 9115 dfom3 9335 r1elss 9495 scott0 9575 fin56 10080 dominf 10132 ac6n 10172 brdom4 10217 dominfac 10260 inawina 10377 eltsk2g 10438 ltsosr 10781 ssxr 10975 recgt0ii 11811 sup2 11861 dfnn2 11916 peano2uz2 12338 eluzp1p1 12539 peano2uz 12570 ubmelfzo 13380 elfzlmr 13429 expclzlem 13734 wrdeq 14167 wwlktovf 14599 fsum2dlem 15410 fprod2dlem 15618 sin02gt0 15829 divalglem6 16035 qredeu 16291 isfunc 17495 xpcbas 17811 drsdirfi 17938 clatl 18141 tsrss 18222 smndex1mgm 18461 gimcnv 18798 gsum2dlem1 19486 gsum2dlem2 19487 lmimcnv 20244 fldidom 20489 xrge0subm 20551 fctop 22062 cctop 22064 alexsubALTlem4 23109 lpbl 23565 xrge0gsumle 23902 xrge0tsms 23903 iirev 23998 iihalf1 24000 iihalf2 24002 iimulcl 24006 vitalilem1 24677 ply1idom 25194 aacjcl 25392 aannenlem2 25394 ang180lem4 25867 lgslem3 26352 tgjustf 26738 axlowdim 27232 axcontlem2 27236 usgrexmplef 27529 cusgrop 27708 rusgrpropedg 27854 spthispth 27995 cycliscrct 28068 wwlksn0 28129 clwwlkccat 28255 clwwlkn 28291 clwwlknonccat 28361 numclwwlk1 28626 nmobndseqi 29042 axhcompl-zf 29261 hhcmpl 29463 shunssi 29631 spansni 29820 pjoml3i 29849 cmcmlem 29854 nonbooli 29914 lnopco0i 30267 pjnmopi 30411 pjnormssi 30431 hatomistici 30625 cvexchi 30632 cmdmdi 30680 mddmdin0i 30694 cdj3lem3b 30703 rmoun 30743 disjin 30826 disjin2 30827 xrge0tsmsd 31219 issgon 31991 sxbrsigalem0 32138 eulerpartlemgs2 32247 ballotlem2 32355 ballotth 32404 bnj945 32653 bnj556 32780 bnj557 32781 bnj607 32796 bnj864 32802 bnj969 32826 bnj999 32838 bnj1398 32914 elpotr 33663 dfon2lem8 33672 ttrcltr 33702 sltval2 33786 madef 33967 lrrecfr 34027 txpss3v 34107 meran1 34527 arg-ax 34532 bj-nfalt 34820 bj-imdirco 35288 difunieq 35472 pibt1 35514 wl-cbvmotv 35599 poimirlem25 35729 poimirlem30 35734 bndss 35871 fldcrng 36089 flddmn 36143 xrnss3v 36429 redundss3 36668 redundpim3 36670 prter1 36820 sn-sup2 40360 mzpclall 40465 setindtrs 40763 dgraalem 40886 ifpimim 41014 inintabss 41075 refimssco 41104 cotrintab 41111 intimass 41151 psshepw 41285 nzin 41825 axc11next 41913 iotaexeu 41925 hbexgVD 42415 absnsb 44408 aovpcov0 44569 aov0ov0 44572 ichan 44795 ichal 44806 spr0el 44822 sprsymrelf 44835 enege 44985 onego 44986 gbogbow 45096 mhmismgmhm 45248 sgrpplusgaopALT 45277 rhmisrnghm 45366 srhmsubclem1 45519 rhmsubcALTVlem3 45552 eluz2cnn0n1 45740 regt1loggt0 45770 rege1logbrege0 45792 rege1logbzge0 45793 relogbmulbexp 45795 |
Copyright terms: Public domain | W3C validator |