![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 3imtr4i | Structured version Visualization version GIF version |
Description: A mixed syllogism inference, useful for applying a definition to both sides of an implication. (Contributed by NM, 3-Jan-1993.) |
Ref | Expression |
---|---|
3imtr4.1 | ⊢ (𝜑 → 𝜓) |
3imtr4.2 | ⊢ (𝜒 ↔ 𝜑) |
3imtr4.3 | ⊢ (𝜃 ↔ 𝜓) |
Ref | Expression |
---|---|
3imtr4i | ⊢ (𝜒 → 𝜃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3imtr4.2 | . . 3 ⊢ (𝜒 ↔ 𝜑) | |
2 | 3imtr4.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
3 | 1, 2 | sylbi 216 | . 2 ⊢ (𝜒 → 𝜓) |
4 | 3imtr4.3 | . 2 ⊢ (𝜃 ↔ 𝜓) | |
5 | 3, 4 | sylibr 233 | 1 ⊢ (𝜒 → 𝜃) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 |
This theorem is referenced by: hbxfrbi 1828 nexmo 2536 moimi 2540 eu6im 2570 ralimi2 3079 reximi2 3080 rexbiOLD 3106 elex 3493 rmoan 3736 rmoimi2 3740 reuan 3891 sseq2 4009 rabss2 4076 n0rex 4355 undif4 4467 r19.2zb 4496 rzal 4509 difprsnss 4803 snsspw 4846 uniin 4936 iuniin 5010 iuneq1 5014 iuneq2 5017 iunpwss 5111 axrep6 5293 eunex 5389 rmorabex 5461 exss 5464 soeq2 5611 elopaelxpOLD 5767 reliin 5818 coeq1 5858 coeq2 5859 cnveq 5874 dmeq 5904 dmin 5912 dmcoss 5971 rncoeq 5975 dminss 6153 imainss 6154 dfco2a 6246 iotaexOLD 6524 fundif 6598 fununi 6624 fof 6806 f1ocnv 6846 foco2 7109 isocnv 7327 isotr 7333 oprabidw 7440 oprabid 7441 zfrep6 7941 ovmptss 8079 dmtpos 8223 tposfn 8240 smores 8352 omopthlem1 8658 eqer 8738 fsetsspwxp 8847 ixpeq2 8905 enssdom 8973 fiprc 9045 sbthlem9 9091 infensuc 9155 fipwuni 9421 dfom3 9642 ttrcltr 9711 r1elss 9801 scott0 9881 fin56 10388 dominf 10440 ac6n 10480 brdom4 10525 dominfac 10568 inawina 10685 eltsk2g 10746 ltsosr 11089 ssxr 11283 recgt0ii 12120 sup2 12170 dfnn2 12225 peano2uz2 12650 eluzp1p1 12850 peano2uz 12885 ubmelfzo 13697 elfzlmr 13746 expclzlem 14049 wrdeq 14486 wwlktovf 14907 fsum2dlem 15716 fprod2dlem 15924 sin02gt0 16135 divalglem6 16341 qredeu 16595 isfunc 17814 xpcbas 18130 drsdirfi 18258 clatl 18461 tsrss 18542 smndex1mgm 18788 gimcnv 19141 gsum2dlem1 19838 gsum2dlem2 19839 lmimcnv 20678 fldidom 20923 xrge0subm 20986 fctop 22507 cctop 22509 alexsubALTlem4 23554 lpbl 24012 xrge0gsumle 24349 xrge0tsms 24350 iirev 24445 iihalf1 24447 iihalf2 24449 iimulcl 24453 vitalilem1 25125 ply1idom 25642 aacjcl 25840 aannenlem2 25842 ang180lem4 26317 lgslem3 26802 sltval2 27159 madef 27352 lrrecfr 27429 norecdiv 27641 elons2 27688 dfn0s2 27705 n0sind 27706 tgjustf 27755 axlowdim 28250 axcontlem2 28254 usgrexmplef 28547 cusgrop 28726 rusgrpropedg 28872 spthispth 29014 cycliscrct 29087 wwlksn0 29148 clwwlkccat 29274 clwwlkn 29310 clwwlknonccat 29380 numclwwlk1 29645 nmobndseqi 30063 axhcompl-zf 30282 hhcmpl 30484 shunssi 30652 spansni 30841 pjoml3i 30870 cmcmlem 30875 nonbooli 30935 lnopco0i 31288 pjnmopi 31432 pjnormssi 31452 hatomistici 31646 cvexchi 31653 cmdmdi 31701 mddmdin0i 31715 cdj3lem3b 31724 rmoun 31765 disjin 31848 disjin2 31849 xrge0tsmsd 32240 issgon 33152 sxbrsigalem0 33301 eulerpartlemgs2 33410 ballotlem2 33518 ballotth 33567 bnj945 33815 bnj556 33942 bnj557 33943 bnj607 33958 bnj864 33964 bnj969 33988 bnj999 34000 bnj1398 34076 elpotr 34784 dfon2lem8 34793 txpss3v 34881 meran1 35344 arg-ax 35349 bj-nfalt 35637 bj-imdirco 36119 difunieq 36303 pibt1 36345 wl-cbvmotv 36430 poimirlem25 36561 poimirlem30 36566 bndss 36702 fldcrngo 36920 flddmn 36974 xrnss3v 37290 trressn 37363 redundss3 37546 redundpim3 37548 eldisjim 37702 eldisjim2 37703 eldisjn0el 37724 partim 37726 mainer 37752 prter1 37797 rimcnv 41140 sn-sup2 41390 mzpclall 41513 setindtrs 41812 dgraalem 41935 oneptri 42054 ifpimim 42308 inintabss 42377 refimssco 42406 cotrintab 42413 intimass 42453 psshepw 42587 nzin 43125 axc11next 43213 iotaexeu 43225 hbexgVD 43715 absnsb 45785 aovpcov0 45946 aov0ov0 45949 ichan 46171 ichal 46182 spr0el 46198 sprsymrelf 46211 enege 46361 onego 46362 gbogbow 46472 mhmismgmhm 46624 sgrpplusgaopALT 46653 rhmisrnghm 46771 subrngrng 46777 srhmsubclem1 47019 rhmsubcALTVlem3 47052 eluz2cnn0n1 47240 regt1loggt0 47270 rege1logbrege0 47292 rege1logbzge0 47293 relogbmulbexp 47295 |
Copyright terms: Public domain | W3C validator |