Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 3imtr4i | Structured version Visualization version GIF version |
Description: A mixed syllogism inference, useful for applying a definition to both sides of an implication. (Contributed by NM, 3-Jan-1993.) |
Ref | Expression |
---|---|
3imtr4.1 | ⊢ (𝜑 → 𝜓) |
3imtr4.2 | ⊢ (𝜒 ↔ 𝜑) |
3imtr4.3 | ⊢ (𝜃 ↔ 𝜓) |
Ref | Expression |
---|---|
3imtr4i | ⊢ (𝜒 → 𝜃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3imtr4.2 | . . 3 ⊢ (𝜒 ↔ 𝜑) | |
2 | 3imtr4.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
3 | 1, 2 | sylbi 216 | . 2 ⊢ (𝜒 → 𝜓) |
4 | 3imtr4.3 | . 2 ⊢ (𝜃 ↔ 𝜓) | |
5 | 3, 4 | sylibr 233 | 1 ⊢ (𝜒 → 𝜃) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 |
This theorem is referenced by: norassOLD 1536 hbxfrbi 1828 nexmo 2542 moimi 2546 eu6im 2576 ralimi2 3085 rexbiOLD 3175 reximi2 3176 elex 3451 rmoan 3675 rmoimi2 3679 reuan 3830 sseq2 3948 rabss2 4012 n0rex 4289 undif4 4401 r19.2zb 4427 rzal 4440 difprsnss 4733 snsspw 4776 uniin 4866 iuniin 4937 iuneq1 4941 iuneq2 4944 iunpwss 5037 axrep6 5217 eunex 5314 rmorabex 5376 exss 5379 pwunssOLD 5485 soeq2 5526 elopaelxpOLD 5678 reliin 5729 coeq1 5769 coeq2 5770 cnveq 5785 dmeq 5815 dmin 5823 dmcoss 5883 rncoeq 5887 dminss 6061 imainss 6062 dfco2a 6154 iotaex 6417 fundif 6490 fununi 6516 fof 6697 f1ocnv 6737 foco2 6992 isocnv 7210 isotr 7216 oprabidw 7315 oprabid 7316 zfrep6 7806 ovmptss 7942 dmtpos 8063 tposfn 8080 smores 8192 omopthlem1 8498 eqer 8542 fsetsspwxp 8650 ixpeq2 8708 enssdom 8774 fiprc 8844 sbthlem9 8887 infensuc 8951 fipwuni 9194 dfom3 9414 ttrcltr 9483 r1elss 9573 scott0 9653 fin56 10158 dominf 10210 ac6n 10250 brdom4 10295 dominfac 10338 inawina 10455 eltsk2g 10516 ltsosr 10859 ssxr 11053 recgt0ii 11890 sup2 11940 dfnn2 11995 peano2uz2 12417 eluzp1p1 12619 peano2uz 12650 ubmelfzo 13461 elfzlmr 13510 expclzlem 13815 wrdeq 14248 wwlktovf 14680 fsum2dlem 15491 fprod2dlem 15699 sin02gt0 15910 divalglem6 16116 qredeu 16372 isfunc 17588 xpcbas 17904 drsdirfi 18032 clatl 18235 tsrss 18316 smndex1mgm 18555 gimcnv 18892 gsum2dlem1 19580 gsum2dlem2 19581 lmimcnv 20338 fldidom 20585 xrge0subm 20648 fctop 22163 cctop 22165 alexsubALTlem4 23210 lpbl 23668 xrge0gsumle 24005 xrge0tsms 24006 iirev 24101 iihalf1 24103 iihalf2 24105 iimulcl 24109 vitalilem1 24781 ply1idom 25298 aacjcl 25496 aannenlem2 25498 ang180lem4 25971 lgslem3 26456 tgjustf 26843 axlowdim 27338 axcontlem2 27342 usgrexmplef 27635 cusgrop 27814 rusgrpropedg 27960 spthispth 28103 cycliscrct 28176 wwlksn0 28237 clwwlkccat 28363 clwwlkn 28399 clwwlknonccat 28469 numclwwlk1 28734 nmobndseqi 29150 axhcompl-zf 29369 hhcmpl 29571 shunssi 29739 spansni 29928 pjoml3i 29957 cmcmlem 29962 nonbooli 30022 lnopco0i 30375 pjnmopi 30519 pjnormssi 30539 hatomistici 30733 cvexchi 30740 cmdmdi 30788 mddmdin0i 30802 cdj3lem3b 30811 rmoun 30851 disjin 30934 disjin2 30935 xrge0tsmsd 31326 issgon 32100 sxbrsigalem0 32247 eulerpartlemgs2 32356 ballotlem2 32464 ballotth 32513 bnj945 32762 bnj556 32889 bnj557 32890 bnj607 32905 bnj864 32911 bnj969 32935 bnj999 32947 bnj1398 33023 elpotr 33766 dfon2lem8 33775 sltval2 33868 madef 34049 lrrecfr 34109 txpss3v 34189 meran1 34609 arg-ax 34614 bj-nfalt 34902 bj-imdirco 35370 difunieq 35554 pibt1 35596 wl-cbvmotv 35681 poimirlem25 35811 poimirlem30 35816 bndss 35953 fldcrng 36171 flddmn 36225 xrnss3v 36509 redundss3 36748 redundpim3 36750 prter1 36900 sn-sup2 40446 mzpclall 40556 setindtrs 40854 dgraalem 40977 ifpimim 41123 inintabss 41193 refimssco 41222 cotrintab 41229 intimass 41269 psshepw 41403 nzin 41943 axc11next 42031 iotaexeu 42043 hbexgVD 42533 absnsb 44532 aovpcov0 44693 aov0ov0 44696 ichan 44918 ichal 44929 spr0el 44945 sprsymrelf 44958 enege 45108 onego 45109 gbogbow 45219 mhmismgmhm 45371 sgrpplusgaopALT 45400 rhmisrnghm 45489 srhmsubclem1 45642 rhmsubcALTVlem3 45675 eluz2cnn0n1 45863 regt1loggt0 45893 rege1logbrege0 45915 rege1logbzge0 45916 relogbmulbexp 45918 |
Copyright terms: Public domain | W3C validator |