![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 3imtr4i | Structured version Visualization version GIF version |
Description: A mixed syllogism inference, useful for applying a definition to both sides of an implication. (Contributed by NM, 3-Jan-1993.) |
Ref | Expression |
---|---|
3imtr4.1 | ⊢ (𝜑 → 𝜓) |
3imtr4.2 | ⊢ (𝜒 ↔ 𝜑) |
3imtr4.3 | ⊢ (𝜃 ↔ 𝜓) |
Ref | Expression |
---|---|
3imtr4i | ⊢ (𝜒 → 𝜃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3imtr4.2 | . . 3 ⊢ (𝜒 ↔ 𝜑) | |
2 | 3imtr4.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
3 | 1, 2 | sylbi 216 | . 2 ⊢ (𝜒 → 𝜓) |
4 | 3imtr4.3 | . 2 ⊢ (𝜃 ↔ 𝜓) | |
5 | 3, 4 | sylibr 233 | 1 ⊢ (𝜒 → 𝜃) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 |
This theorem is referenced by: hbxfrbi 1827 nexmo 2535 moimi 2539 eu6im 2569 ralimi2 3078 reximi2 3079 rexbiOLD 3105 elex 3492 rmoan 3735 rmoimi2 3739 reuan 3890 sseq2 4008 rabss2 4075 n0rex 4354 undif4 4466 r19.2zb 4495 rzal 4508 difprsnss 4802 snsspw 4845 uniin 4935 iuniin 5009 iuneq1 5013 iuneq2 5016 iunpwss 5110 axrep6 5292 eunex 5388 rmorabex 5460 exss 5463 soeq2 5610 elopaelxpOLD 5766 reliin 5817 coeq1 5857 coeq2 5858 cnveq 5873 dmeq 5903 dmin 5911 dmcoss 5970 rncoeq 5974 dminss 6152 imainss 6153 dfco2a 6245 iotaexOLD 6523 fundif 6597 fununi 6623 fof 6805 f1ocnv 6845 foco2 7110 isocnv 7329 isotr 7335 oprabidw 7442 oprabid 7443 zfrep6 7943 ovmptss 8081 dmtpos 8225 tposfn 8242 smores 8354 omopthlem1 8660 eqer 8740 fsetsspwxp 8849 ixpeq2 8907 enssdom 8975 fiprc 9047 sbthlem9 9093 infensuc 9157 fipwuni 9423 dfom3 9644 ttrcltr 9713 r1elss 9803 scott0 9883 fin56 10390 dominf 10442 ac6n 10482 brdom4 10527 dominfac 10570 inawina 10687 eltsk2g 10748 ltsosr 11091 ssxr 11287 recgt0ii 12124 sup2 12174 dfnn2 12229 peano2uz2 12654 eluzp1p1 12854 peano2uz 12889 ubmelfzo 13701 elfzlmr 13750 expclzlem 14053 wrdeq 14490 wwlktovf 14911 fsum2dlem 15720 fprod2dlem 15928 sin02gt0 16139 divalglem6 16345 qredeu 16599 isfunc 17818 xpcbas 18134 drsdirfi 18262 clatl 18465 tsrss 18546 mhmismgmhm 18713 smndex1mgm 18824 gimcnv 19181 gsum2dlem1 19879 gsum2dlem2 19880 rhmisrnghm 20371 subrngrng 20438 lmimcnv 20822 fldidom 21123 xrge0subm 21186 fctop 22727 cctop 22729 alexsubALTlem4 23774 lpbl 24232 xrge0gsumle 24569 xrge0tsms 24570 iirev 24669 iihalf1 24671 iihalf2 24673 iimulcl 24677 vitalilem1 25349 ply1idom 25866 aacjcl 26064 aannenlem2 26066 ang180lem4 26541 lgslem3 27026 sltval2 27383 madef 27576 lrrecfr 27653 norecdiv 27865 elons2 27912 dfn0s2 27929 n0sind 27930 tgjustf 27979 axlowdim 28474 axcontlem2 28478 usgrexmplef 28771 cusgrop 28950 rusgrpropedg 29096 spthispth 29238 cycliscrct 29311 wwlksn0 29372 clwwlkccat 29498 clwwlkn 29534 clwwlknonccat 29604 numclwwlk1 29869 nmobndseqi 30287 axhcompl-zf 30506 hhcmpl 30708 shunssi 30876 spansni 31065 pjoml3i 31094 cmcmlem 31099 nonbooli 31159 lnopco0i 31512 pjnmopi 31656 pjnormssi 31676 hatomistici 31870 cvexchi 31877 cmdmdi 31925 mddmdin0i 31939 cdj3lem3b 31948 rmoun 31989 disjin 32072 disjin2 32073 xrge0tsmsd 32467 issgon 33407 sxbrsigalem0 33556 eulerpartlemgs2 33665 ballotlem2 33773 ballotth 33822 bnj945 34070 bnj556 34197 bnj557 34198 bnj607 34213 bnj864 34219 bnj969 34243 bnj999 34255 bnj1398 34331 elpotr 35045 dfon2lem8 35054 txpss3v 35142 meran1 35599 arg-ax 35604 bj-nfalt 35892 bj-imdirco 36374 difunieq 36558 pibt1 36600 wl-cbvmotv 36685 poimirlem25 36816 poimirlem30 36821 bndss 36957 fldcrngo 37175 flddmn 37229 xrnss3v 37545 trressn 37618 redundss3 37801 redundpim3 37803 eldisjim 37957 eldisjim2 37958 eldisjn0el 37979 partim 37981 mainer 38007 prter1 38052 rimcnv 41396 sn-sup2 41644 mzpclall 41767 setindtrs 42066 dgraalem 42189 oneptri 42308 ifpimim 42562 inintabss 42631 refimssco 42660 cotrintab 42667 intimass 42707 psshepw 42841 nzin 43379 axc11next 43467 iotaexeu 43479 hbexgVD 43969 absnsb 46036 aovpcov0 46197 aov0ov0 46200 ichan 46422 ichal 46433 spr0el 46449 sprsymrelf 46462 enege 46612 onego 46613 gbogbow 46723 sgrpplusgaopALT 46872 srhmsubclem1 47060 rhmsubcALTVlem3 47093 eluz2cnn0n1 47280 regt1loggt0 47310 rege1logbrege0 47332 rege1logbzge0 47333 relogbmulbexp 47335 |
Copyright terms: Public domain | W3C validator |