Users' Mathboxes Mathbox for Wolf Lammen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  wl-lem-exsb Structured version   Visualization version   GIF version

Theorem wl-lem-exsb 35721
Description: This theorem provides a basic working step in proving theorems about ∃* or ∃!. (Contributed by Wolf Lammen, 3-Oct-2019.)
Assertion
Ref Expression
wl-lem-exsb (𝑥 = 𝑦 → (𝜑 ↔ ∀𝑥(𝑥 = 𝑦𝜑)))
Distinct variable group:   𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)

Proof of Theorem wl-lem-exsb
StepHypRef Expression
1 ax12v2 2173 . 2 (𝑥 = 𝑦 → (𝜑 → ∀𝑥(𝑥 = 𝑦𝜑)))
2 sp 2176 . . 3 (∀𝑥(𝑥 = 𝑦𝜑) → (𝑥 = 𝑦𝜑))
32com12 32 . 2 (𝑥 = 𝑦 → (∀𝑥(𝑥 = 𝑦𝜑) → 𝜑))
41, 3impbid 211 1 (𝑥 = 𝑦 → (𝜑 ↔ ∀𝑥(𝑥 = 𝑦𝜑)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wal 1537
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-12 2171
This theorem depends on definitions:  df-bi 206  df-an 397  df-ex 1783
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator