| Mathbox for Wolf Lammen |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > wl-2spsbbi | Structured version Visualization version GIF version | ||
| Description: spsbbi 2074 applied twice. (Contributed by Wolf Lammen, 5-Aug-2023.) |
| Ref | Expression |
|---|---|
| wl-2spsbbi | ⊢ (∀𝑎∀𝑏(𝜑 ↔ 𝜓) → ([𝑦 / 𝑏][𝑥 / 𝑎]𝜑 ↔ [𝑦 / 𝑏][𝑥 / 𝑎]𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | alcom 2160 | . 2 ⊢ (∀𝑎∀𝑏(𝜑 ↔ 𝜓) ↔ ∀𝑏∀𝑎(𝜑 ↔ 𝜓)) | |
| 2 | nfa1 2152 | . . 3 ⊢ Ⅎ𝑏∀𝑏∀𝑎(𝜑 ↔ 𝜓) | |
| 3 | nfa1 2152 | . . . . 5 ⊢ Ⅎ𝑎∀𝑎(𝜑 ↔ 𝜓) | |
| 4 | sp 2184 | . . . . 5 ⊢ (∀𝑎(𝜑 ↔ 𝜓) → (𝜑 ↔ 𝜓)) | |
| 5 | 3, 4 | sbbid 2247 | . . . 4 ⊢ (∀𝑎(𝜑 ↔ 𝜓) → ([𝑥 / 𝑎]𝜑 ↔ [𝑥 / 𝑎]𝜓)) |
| 6 | 5 | sps 2186 | . . 3 ⊢ (∀𝑏∀𝑎(𝜑 ↔ 𝜓) → ([𝑥 / 𝑎]𝜑 ↔ [𝑥 / 𝑎]𝜓)) |
| 7 | 2, 6 | sbbid 2247 | . 2 ⊢ (∀𝑏∀𝑎(𝜑 ↔ 𝜓) → ([𝑦 / 𝑏][𝑥 / 𝑎]𝜑 ↔ [𝑦 / 𝑏][𝑥 / 𝑎]𝜓)) |
| 8 | 1, 7 | sylbi 217 | 1 ⊢ (∀𝑎∀𝑏(𝜑 ↔ 𝜓) → ([𝑦 / 𝑏][𝑥 / 𝑎]𝜑 ↔ [𝑦 / 𝑏][𝑥 / 𝑎]𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∀wal 1538 [wsb 2065 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-10 2142 ax-11 2158 ax-12 2178 |
| This theorem depends on definitions: df-bi 207 df-or 848 df-ex 1780 df-nf 1784 df-sb 2066 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |