Users' Mathboxes Mathbox for Wolf Lammen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  wl-nfalv Structured version   Visualization version   GIF version

Theorem wl-nfalv 35684
Description: If 𝑥 is not present in 𝜑, it is not free in 𝑦𝜑. (Contributed by Wolf Lammen, 11-Jan-2020.)
Assertion
Ref Expression
wl-nfalv 𝑥𝑦𝜑
Distinct variable group:   𝜑,𝑥
Allowed substitution hint:   𝜑(𝑦)

Proof of Theorem wl-nfalv
StepHypRef Expression
1 ax-5 1913 . . 3 (𝜑 → ∀𝑥𝜑)
21hbal 2167 . 2 (∀𝑦𝜑 → ∀𝑥𝑦𝜑)
32nf5i 2142 1 𝑥𝑦𝜑
Colors of variables: wff setvar class
Syntax hints:  wal 1537  wnf 1786
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-10 2137  ax-11 2154
This theorem depends on definitions:  df-bi 206  df-ex 1783  df-nf 1787
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator