| Mathbox for Wolf Lammen |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > wl-nfimf1 | Structured version Visualization version GIF version | ||
| Description: An antecedent is irrelevant to a not-free property, if it always holds. I used this variant of nfim 1896 in dvelimdf 2454 to simplify the proof. (Contributed by Wolf Lammen, 14-Oct-2018.) |
| Ref | Expression |
|---|---|
| wl-nfimf1 | ⊢ (∀𝑥𝜑 → (Ⅎ𝑥(𝜑 → 𝜓) ↔ Ⅎ𝑥𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfa1 2151 | . 2 ⊢ Ⅎ𝑥∀𝑥𝜑 | |
| 2 | pm5.5 361 | . . 3 ⊢ (𝜑 → ((𝜑 → 𝜓) ↔ 𝜓)) | |
| 3 | 2 | sps 2185 | . 2 ⊢ (∀𝑥𝜑 → ((𝜑 → 𝜓) ↔ 𝜓)) |
| 4 | 1, 3 | nfbidf 2224 | 1 ⊢ (∀𝑥𝜑 → (Ⅎ𝑥(𝜑 → 𝜓) ↔ Ⅎ𝑥𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∀wal 1538 Ⅎwnf 1783 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-10 2141 ax-12 2177 |
| This theorem depends on definitions: df-bi 207 df-or 849 df-ex 1780 df-nf 1784 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |