![]() |
Mathbox for Wolf Lammen |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > wl-rgen | Structured version Visualization version GIF version |
Description: Generalization rule for restricted quantification. (Contributed by Wolf Lammen, 10-Jun-2023.) |
Ref | Expression |
---|---|
wl-rgen.1 | ⊢ (𝑥 ∈ 𝐴 → 𝜑) |
Ref | Expression |
---|---|
wl-rgen | ⊢ ∀(𝑥 : 𝐴)𝜑 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | wl-dfralv 34393 | . 2 ⊢ (∀(𝑥 : 𝐴)𝜑 ↔ ∀𝑥(𝑥 ∈ 𝐴 → 𝜑)) | |
2 | wl-rgen.1 | . 2 ⊢ (𝑥 ∈ 𝐴 → 𝜑) | |
3 | 1, 2 | mpgbir 1785 | 1 ⊢ ∀(𝑥 : 𝐴)𝜑 |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2083 ∀wl-ral 34383 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1781 ax-4 1795 ax-5 1892 ax-6 1951 ax-7 1996 ax-8 2085 ax-11 2128 |
This theorem depends on definitions: df-bi 208 df-an 397 df-ex 1766 df-clel 2865 df-wl-ral 34388 |
This theorem is referenced by: wl-ralel 34397 |
Copyright terms: Public domain | W3C validator |