Users' Mathboxes Mathbox for Wolf Lammen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  wl-rgen Structured version   Visualization version   GIF version

Theorem wl-rgen 34394
Description: Generalization rule for restricted quantification. (Contributed by Wolf Lammen, 10-Jun-2023.)
Hypothesis
Ref Expression
wl-rgen.1 (𝑥𝐴𝜑)
Assertion
Ref Expression
wl-rgen ∀(𝑥 : 𝐴)𝜑
Distinct variable group:   𝑥,𝐴
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem wl-rgen
StepHypRef Expression
1 wl-dfralv 34393 . 2 (∀(𝑥 : 𝐴)𝜑 ↔ ∀𝑥(𝑥𝐴𝜑))
2 wl-rgen.1 . 2 (𝑥𝐴𝜑)
31, 2mpgbir 1785 1 ∀(𝑥 : 𝐴)𝜑
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2083  wl-ral 34383
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1781  ax-4 1795  ax-5 1892  ax-6 1951  ax-7 1996  ax-8 2085  ax-11 2128
This theorem depends on definitions:  df-bi 208  df-an 397  df-ex 1766  df-clel 2865  df-wl-ral 34388
This theorem is referenced by:  wl-ralel  34397
  Copyright terms: Public domain W3C validator