![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mpgbir | Structured version Visualization version GIF version |
Description: Modus ponens on biconditional combined with generalization. (Contributed by NM, 24-May-1994.) (Proof shortened by Stefan Allan, 28-Oct-2008.) |
Ref | Expression |
---|---|
mpgbir.1 | ⊢ (𝜑 ↔ ∀𝑥𝜓) |
mpgbir.2 | ⊢ 𝜓 |
Ref | Expression |
---|---|
mpgbir | ⊢ 𝜑 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mpgbir.2 | . . 3 ⊢ 𝜓 | |
2 | 1 | ax-gen 1793 | . 2 ⊢ ∀𝑥𝜓 |
3 | mpgbir.1 | . 2 ⊢ (𝜑 ↔ ∀𝑥𝜓) | |
4 | 2, 3 | mpbir 231 | 1 ⊢ 𝜑 |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 ∀wal 1535 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 |
This theorem depends on definitions: df-bi 207 |
This theorem is referenced by: cvjust 2734 eqriv 2737 nfci 2896 abid2f 2942 abid2fOLD 2943 rgen 3069 rabeqcOLD 3706 ssriv 4012 nel0 4377 rab0 4409 ssmin 4991 intab 5002 iunab 5074 iinab 5091 sndisj 5158 disjxsn 5160 abex 5344 intidOLD 5478 fr0 5678 relssi 5811 dmi 5946 dmep 5948 onfr 6434 funopabeq 6614 isarep2 6669 opabiotafun 7002 fvopab3ig 7025 opabex 7257 caovmo 7687 trom 7912 tz7.44lem1 8461 pwfir 9383 dfsup2 9513 zfregfr 9674 dfom3 9716 dfttrcl2 9793 trcl 9797 tc2 9811 rankf 9863 rankval4 9936 uniwun 10809 dfnn2 12306 dfuzi 12734 fzodisj 13750 fzodisjsn 13754 cycsubg 19248 efger 19760 made0 27930 lrrecfr 27994 dfn0s2 28354 ajfuni 30891 funadj 31918 rabexgfGS 32527 abrexdomjm 32535 ballotth 34502 bnj1133 34965 satfv0fun 35339 fmla0xp 35351 dfon3 35856 fnsingle 35883 dfiota3 35887 hftr 36146 bj-rabtrALT 36897 ismblfin 37621 abrexdom 37690 cllem0 43528 cotrintab 43576 brtrclfv2 43689 snhesn 43748 psshepw 43750 k0004val0 44116 scottabf 44209 compab 44411 onfrALT 44520 dvcosre 45833 upwordnul 46799 upwordsing 46803 cfsetssfset 46971 alimp-surprise 48874 |
Copyright terms: Public domain | W3C validator |