| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mpgbir | Structured version Visualization version GIF version | ||
| Description: Modus ponens on biconditional combined with generalization. (Contributed by NM, 24-May-1994.) (Proof shortened by Stefan Allan, 28-Oct-2008.) |
| Ref | Expression |
|---|---|
| mpgbir.1 | ⊢ (𝜑 ↔ ∀𝑥𝜓) |
| mpgbir.2 | ⊢ 𝜓 |
| Ref | Expression |
|---|---|
| mpgbir | ⊢ 𝜑 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mpgbir.2 | . . 3 ⊢ 𝜓 | |
| 2 | 1 | ax-gen 1795 | . 2 ⊢ ∀𝑥𝜓 |
| 3 | mpgbir.1 | . 2 ⊢ (𝜑 ↔ ∀𝑥𝜓) | |
| 4 | 2, 3 | mpbir 231 | 1 ⊢ 𝜑 |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∀wal 1538 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 |
| This theorem depends on definitions: df-bi 207 |
| This theorem is referenced by: sbt 2067 cvjust 2723 eqriv 2726 nfci 2879 abid2f 2922 abid2fOLD 2923 rgen 3046 rabeqcOLD 3657 ssriv 3950 nel0 4317 rab0 4349 ssmin 4931 intab 4942 iunab 5015 iinab 5032 sndisj 5099 disjxsn 5101 abex 5281 intidOLD 5418 fr0 5616 relssi 5750 dmi 5885 dmep 5887 onfr 6371 funopabeq 6552 isarep2 6608 opabiotafun 6941 fvopab3ig 6964 opabex 7194 caovmo 7626 trom 7851 tz7.44lem1 8373 pwfir 9266 dfsup2 9395 zfregfr 9558 dfom3 9600 dfttrcl2 9677 trcl 9681 tc2 9695 rankf 9747 rankval4 9820 uniwun 10693 dfnn2 12199 dfuzi 12625 fzodisj 13654 fzodisjsn 13658 cycsubg 19140 efger 19648 made0 27785 lrrecfr 27850 dfn0s2 28224 ajfuni 30788 funadj 31815 rabexgfGS 32428 abrexdomjm 32436 ballotth 34529 bnj1133 34979 satfv0fun 35358 fmla0xp 35370 dfon3 35880 fnsingle 35907 dfiota3 35911 hftr 36170 bj-rabtrALT 36919 ismblfin 37655 abrexdom 37724 cllem0 43555 cotrintab 43603 brtrclfv2 43716 snhesn 43775 psshepw 43777 k0004val0 44143 scottabf 44229 compab 44431 onfrALT 44539 dvcosre 45910 upwordnul 46878 upwordsing 46882 cfsetssfset 47057 alimp-surprise 49769 |
| Copyright terms: Public domain | W3C validator |