| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mpgbir | Structured version Visualization version GIF version | ||
| Description: Modus ponens on biconditional combined with generalization. (Contributed by NM, 24-May-1994.) (Proof shortened by Stefan Allan, 28-Oct-2008.) |
| Ref | Expression |
|---|---|
| mpgbir.1 | ⊢ (𝜑 ↔ ∀𝑥𝜓) |
| mpgbir.2 | ⊢ 𝜓 |
| Ref | Expression |
|---|---|
| mpgbir | ⊢ 𝜑 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mpgbir.2 | . . 3 ⊢ 𝜓 | |
| 2 | 1 | ax-gen 1795 | . 2 ⊢ ∀𝑥𝜓 |
| 3 | mpgbir.1 | . 2 ⊢ (𝜑 ↔ ∀𝑥𝜓) | |
| 4 | 2, 3 | mpbir 231 | 1 ⊢ 𝜑 |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∀wal 1538 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 |
| This theorem depends on definitions: df-bi 207 |
| This theorem is referenced by: sbt 2067 cvjust 2723 eqriv 2726 nfci 2879 abid2f 2922 abid2fOLD 2923 rgen 3046 rabeqcOLD 3646 ssriv 3939 nel0 4305 rab0 4337 ssmin 4917 intab 4928 iunab 5000 iinab 5017 sndisj 5084 disjxsn 5086 abex 5265 intidOLD 5401 fr0 5597 relssi 5730 dmi 5864 dmep 5866 onfr 6346 funopabeq 6518 isarep2 6572 opabiotafun 6903 fvopab3ig 6926 opabex 7156 caovmo 7586 trom 7808 tz7.44lem1 8327 pwfir 9206 dfsup2 9334 zfregfr 9500 dfom3 9543 dfttrcl2 9620 trcl 9624 tc2 9638 rankf 9690 rankval4 9763 uniwun 10634 dfnn2 12141 dfuzi 12567 fzodisj 13596 fzodisjsn 13600 cycsubg 19087 efger 19597 made0 27787 lrrecfr 27855 dfn0s2 28229 ajfuni 30803 funadj 31830 rabexgfGS 32443 abrexdomjm 32451 ballotth 34506 bnj1133 34956 satfv0fun 35344 fmla0xp 35356 dfon3 35866 fnsingle 35893 dfiota3 35897 hftr 36156 bj-rabtrALT 36905 ismblfin 37641 abrexdom 37710 cllem0 43539 cotrintab 43587 brtrclfv2 43700 snhesn 43759 psshepw 43761 k0004val0 44127 scottabf 44213 compab 44415 onfrALT 44523 dvcosre 45893 upwordnul 46861 upwordsing 46865 cfsetssfset 47040 alimp-surprise 49765 |
| Copyright terms: Public domain | W3C validator |