Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > mpgbir | Structured version Visualization version GIF version |
Description: Modus ponens on biconditional combined with generalization. (Contributed by NM, 24-May-1994.) (Proof shortened by Stefan Allan, 28-Oct-2008.) |
Ref | Expression |
---|---|
mpgbir.1 | ⊢ (𝜑 ↔ ∀𝑥𝜓) |
mpgbir.2 | ⊢ 𝜓 |
Ref | Expression |
---|---|
mpgbir | ⊢ 𝜑 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mpgbir.2 | . . 3 ⊢ 𝜓 | |
2 | 1 | ax-gen 1801 | . 2 ⊢ ∀𝑥𝜓 |
3 | mpgbir.1 | . 2 ⊢ (𝜑 ↔ ∀𝑥𝜓) | |
4 | 2, 3 | mpbir 230 | 1 ⊢ 𝜑 |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∀wal 1539 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 |
This theorem depends on definitions: df-bi 206 |
This theorem is referenced by: cvjust 2733 eqriv 2736 nfci 2891 abid2f 2940 rgen 3075 rabeqc 3623 ssriv 3929 ss2abiOLD 4005 nel0 4289 rab0 4321 abfOLD 4342 ssmin 4903 intab 4914 iunab 4985 iinab 5001 sndisj 5069 disjxsn 5071 intid 5375 fr0 5567 relssi 5694 dmi 5827 dmep 5829 onfr 6302 funopabeq 6466 isarep2 6519 opabiotafun 6843 fvopab3ig 6865 opabex 7090 caovmo 7500 trom 7709 tz7.44lem1 8220 pwfir 8924 dfsup2 9164 zfregfr 9324 dfom3 9366 dfttrcl2 9443 trcl 9469 tc2 9483 rankf 9536 rankval4 9609 uniwun 10480 dfnn2 11969 dfuzi 12394 fzodisj 13402 fzodisjsn 13406 cycsubg 18808 efger 19305 ajfuni 29200 funadj 30227 rabexgfGS 30825 abrexdomjm 30831 ballotth 32483 bnj1133 32948 satfv0fun 33312 fmla0xp 33324 made0 34036 lrrecfr 34079 dfon3 34173 fnsingle 34200 dfiota3 34204 hftr 34463 bj-rabtrALT 35098 ismblfin 35797 abrexdom 35867 cllem0 41126 cotrintab 41175 brtrclfv2 41288 snhesn 41347 psshepw 41349 k0004val0 41717 scottabf 41811 compab 42013 onfrALT 42122 dvcosre 43407 cfsetssfset 44501 alimp-surprise 46436 upwordnul 46464 |
Copyright terms: Public domain | W3C validator |