Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > mpgbir | Structured version Visualization version GIF version |
Description: Modus ponens on biconditional combined with generalization. (Contributed by NM, 24-May-1994.) (Proof shortened by Stefan Allan, 28-Oct-2008.) |
Ref | Expression |
---|---|
mpgbir.1 | ⊢ (𝜑 ↔ ∀𝑥𝜓) |
mpgbir.2 | ⊢ 𝜓 |
Ref | Expression |
---|---|
mpgbir | ⊢ 𝜑 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mpgbir.2 | . . 3 ⊢ 𝜓 | |
2 | 1 | ax-gen 1798 | . 2 ⊢ ∀𝑥𝜓 |
3 | mpgbir.1 | . 2 ⊢ (𝜑 ↔ ∀𝑥𝜓) | |
4 | 2, 3 | mpbir 230 | 1 ⊢ 𝜑 |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∀wal 1537 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 |
This theorem depends on definitions: df-bi 206 |
This theorem is referenced by: cvjust 2733 eqriv 2736 nfci 2891 abid2f 2940 rgen 3075 rabeqc 3623 ssriv 3926 ss2abiOLD 4002 nel0 4285 rab0 4317 abfOLD 4338 ssmin 4899 intab 4910 iunab 4982 iinab 4998 sndisj 5066 disjxsn 5068 intid 5374 fr0 5569 relssi 5699 dmi 5833 dmep 5835 onfr 6309 funopabeq 6477 isarep2 6532 opabiotafun 6858 fvopab3ig 6880 opabex 7105 caovmo 7518 trom 7730 tz7.44lem1 8245 pwfir 8968 dfsup2 9212 zfregfr 9372 dfom3 9414 dfttrcl2 9491 trcl 9495 tc2 9509 rankf 9561 rankval4 9634 uniwun 10505 dfnn2 11995 dfuzi 12420 fzodisj 13430 fzodisjsn 13434 cycsubg 18836 efger 19333 ajfuni 29230 funadj 30257 rabexgfGS 30855 abrexdomjm 30861 ballotth 32513 bnj1133 32978 satfv0fun 33342 fmla0xp 33354 made0 34066 lrrecfr 34109 dfon3 34203 fnsingle 34230 dfiota3 34234 hftr 34493 bj-rabtrALT 35128 ismblfin 35827 abrexdom 35897 cllem0 41180 cotrintab 41229 brtrclfv2 41342 snhesn 41401 psshepw 41403 k0004val0 41771 scottabf 41865 compab 42067 onfrALT 42176 dvcosre 43460 cfsetssfset 44561 alimp-surprise 46495 upwordnul 46526 upwordsing 46530 |
Copyright terms: Public domain | W3C validator |