| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mpgbir | Structured version Visualization version GIF version | ||
| Description: Modus ponens on biconditional combined with generalization. (Contributed by NM, 24-May-1994.) (Proof shortened by Stefan Allan, 28-Oct-2008.) |
| Ref | Expression |
|---|---|
| mpgbir.1 | ⊢ (𝜑 ↔ ∀𝑥𝜓) |
| mpgbir.2 | ⊢ 𝜓 |
| Ref | Expression |
|---|---|
| mpgbir | ⊢ 𝜑 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mpgbir.2 | . . 3 ⊢ 𝜓 | |
| 2 | 1 | ax-gen 1795 | . 2 ⊢ ∀𝑥𝜓 |
| 3 | mpgbir.1 | . 2 ⊢ (𝜑 ↔ ∀𝑥𝜓) | |
| 4 | 2, 3 | mpbir 231 | 1 ⊢ 𝜑 |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∀wal 1538 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 |
| This theorem depends on definitions: df-bi 207 |
| This theorem is referenced by: sbt 2067 cvjust 2730 eqriv 2733 nfci 2887 abid2f 2930 abid2fOLD 2931 rgen 3054 rabeqcOLD 3674 ssriv 3967 nel0 4334 rab0 4366 ssmin 4948 intab 4959 iunab 5032 iinab 5049 sndisj 5116 disjxsn 5118 abex 5301 intidOLD 5438 fr0 5637 relssi 5771 dmi 5906 dmep 5908 onfr 6396 funopabeq 6577 isarep2 6633 opabiotafun 6964 fvopab3ig 6987 opabex 7217 caovmo 7649 trom 7875 tz7.44lem1 8424 pwfir 9332 dfsup2 9461 zfregfr 9624 dfom3 9666 dfttrcl2 9743 trcl 9747 tc2 9761 rankf 9813 rankval4 9886 uniwun 10759 dfnn2 12258 dfuzi 12689 fzodisj 13715 fzodisjsn 13719 cycsubg 19196 efger 19704 made0 27842 lrrecfr 27907 dfn0s2 28281 ajfuni 30845 funadj 31872 rabexgfGS 32485 abrexdomjm 32493 ballotth 34575 bnj1133 35025 satfv0fun 35398 fmla0xp 35410 dfon3 35915 fnsingle 35942 dfiota3 35946 hftr 36205 bj-rabtrALT 36954 ismblfin 37690 abrexdom 37759 cllem0 43565 cotrintab 43613 brtrclfv2 43726 snhesn 43785 psshepw 43787 k0004val0 44153 scottabf 44239 compab 44441 onfrALT 44549 dvcosre 45921 upwordnul 46889 upwordsing 46893 cfsetssfset 47065 alimp-surprise 49624 |
| Copyright terms: Public domain | W3C validator |