Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > mpgbir | Structured version Visualization version GIF version |
Description: Modus ponens on biconditional combined with generalization. (Contributed by NM, 24-May-1994.) (Proof shortened by Stefan Allan, 28-Oct-2008.) |
Ref | Expression |
---|---|
mpgbir.1 | ⊢ (𝜑 ↔ ∀𝑥𝜓) |
mpgbir.2 | ⊢ 𝜓 |
Ref | Expression |
---|---|
mpgbir | ⊢ 𝜑 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mpgbir.2 | . . 3 ⊢ 𝜓 | |
2 | 1 | ax-gen 1799 | . 2 ⊢ ∀𝑥𝜓 |
3 | mpgbir.1 | . 2 ⊢ (𝜑 ↔ ∀𝑥𝜓) | |
4 | 2, 3 | mpbir 230 | 1 ⊢ 𝜑 |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∀wal 1537 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 |
This theorem depends on definitions: df-bi 206 |
This theorem is referenced by: cvjust 2732 eqriv 2735 nfci 2889 abid2f 2938 rgen 3073 rabeqc 3615 ssriv 3921 ss2abiOLD 3997 nel0 4281 rab0 4313 abfOLD 4334 ssmin 4895 intab 4906 iunab 4977 iinab 4993 sndisj 5061 disjxsn 5063 intid 5367 fr0 5559 relssi 5686 dmi 5819 dmep 5821 onfr 6290 funopabeq 6454 isarep2 6507 opabiotafun 6831 fvopab3ig 6853 opabex 7078 caovmo 7487 trom 7696 tz7.44lem1 8207 pwfir 8921 dfsup2 9133 zfregfr 9293 dfom3 9335 trcl 9417 tc2 9431 rankf 9483 rankval4 9556 uniwun 10427 dfnn2 11916 dfuzi 12341 fzodisj 13349 fzodisjsn 13353 cycsubg 18742 efger 19239 ajfuni 29122 funadj 30149 rabexgfGS 30747 abrexdomjm 30753 ballotth 32404 bnj1133 32869 satfv0fun 33233 fmla0xp 33245 dfttrcl2 33710 made0 33984 lrrecfr 34027 dfon3 34121 fnsingle 34148 dfiota3 34152 hftr 34411 bj-rabtrALT 35046 ismblfin 35745 abrexdom 35815 cllem0 41062 cotrintab 41111 brtrclfv2 41224 snhesn 41283 psshepw 41285 k0004val0 41653 scottabf 41747 compab 41949 onfrALT 42058 dvcosre 43343 cfsetssfset 44437 alimp-surprise 46370 |
Copyright terms: Public domain | W3C validator |