![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mpgbir | Structured version Visualization version GIF version |
Description: Modus ponens on biconditional combined with generalization. (Contributed by NM, 24-May-1994.) (Proof shortened by Stefan Allan, 28-Oct-2008.) |
Ref | Expression |
---|---|
mpgbir.1 | ⊢ (𝜑 ↔ ∀𝑥𝜓) |
mpgbir.2 | ⊢ 𝜓 |
Ref | Expression |
---|---|
mpgbir | ⊢ 𝜑 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mpgbir.2 | . . 3 ⊢ 𝜓 | |
2 | 1 | ax-gen 1798 | . 2 ⊢ ∀𝑥𝜓 |
3 | mpgbir.1 | . 2 ⊢ (𝜑 ↔ ∀𝑥𝜓) | |
4 | 2, 3 | mpbir 230 | 1 ⊢ 𝜑 |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∀wal 1540 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 |
This theorem depends on definitions: df-bi 206 |
This theorem is referenced by: cvjust 2727 eqriv 2730 nfci 2887 abid2f 2937 abid2fOLD 2938 rgen 3064 rabeqcOLD 3681 ssriv 3986 ss2abiOLD 4064 nel0 4350 rab0 4382 abfOLD 4403 ssmin 4971 intab 4982 iunab 5054 iinab 5071 sndisj 5139 disjxsn 5141 intidOLD 5458 fr0 5655 relssi 5786 dmi 5920 dmep 5922 onfr 6401 funopabeq 6582 isarep2 6637 opabiotafun 6970 fvopab3ig 6992 opabex 7219 caovmo 7641 trom 7861 tz7.44lem1 8402 pwfir 9173 dfsup2 9436 zfregfr 9597 dfom3 9639 dfttrcl2 9716 trcl 9720 tc2 9734 rankf 9786 rankval4 9859 uniwun 10732 dfnn2 12222 dfuzi 12650 fzodisj 13663 fzodisjsn 13667 cycsubg 19080 efger 19581 made0 27358 lrrecfr 27417 ajfuni 30100 funadj 31127 rabexgfGS 31727 abrexdomjm 31732 ballotth 33525 bnj1133 33989 satfv0fun 34351 fmla0xp 34363 dfon3 34853 fnsingle 34880 dfiota3 34884 hftr 35143 bj-rabtrALT 35800 ismblfin 36518 abrexdom 36587 cllem0 42303 cotrintab 42351 brtrclfv2 42464 snhesn 42523 psshepw 42525 k0004val0 42891 scottabf 42985 compab 43187 onfrALT 43296 dvcosre 44615 upwordnul 45581 upwordsing 45585 cfsetssfset 45753 alimp-surprise 47781 |
Copyright terms: Public domain | W3C validator |