| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mpgbir | Structured version Visualization version GIF version | ||
| Description: Modus ponens on biconditional combined with generalization. (Contributed by NM, 24-May-1994.) (Proof shortened by Stefan Allan, 28-Oct-2008.) |
| Ref | Expression |
|---|---|
| mpgbir.1 | ⊢ (𝜑 ↔ ∀𝑥𝜓) |
| mpgbir.2 | ⊢ 𝜓 |
| Ref | Expression |
|---|---|
| mpgbir | ⊢ 𝜑 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mpgbir.2 | . . 3 ⊢ 𝜓 | |
| 2 | 1 | ax-gen 1795 | . 2 ⊢ ∀𝑥𝜓 |
| 3 | mpgbir.1 | . 2 ⊢ (𝜑 ↔ ∀𝑥𝜓) | |
| 4 | 2, 3 | mpbir 231 | 1 ⊢ 𝜑 |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∀wal 1538 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 |
| This theorem depends on definitions: df-bi 207 |
| This theorem is referenced by: sbt 2067 cvjust 2723 eqriv 2726 nfci 2879 abid2f 2922 abid2fOLD 2923 rgen 3046 rabeqcOLD 3654 ssriv 3947 nel0 4313 rab0 4345 ssmin 4927 intab 4938 iunab 5010 iinab 5027 sndisj 5094 disjxsn 5096 abex 5276 intidOLD 5413 fr0 5609 relssi 5741 dmi 5875 dmep 5877 onfr 6359 funopabeq 6536 isarep2 6590 opabiotafun 6923 fvopab3ig 6946 opabex 7176 caovmo 7606 trom 7831 tz7.44lem1 8350 pwfir 9242 dfsup2 9371 zfregfr 9534 dfom3 9576 dfttrcl2 9653 trcl 9657 tc2 9671 rankf 9723 rankval4 9796 uniwun 10669 dfnn2 12175 dfuzi 12601 fzodisj 13630 fzodisjsn 13634 cycsubg 19116 efger 19624 made0 27761 lrrecfr 27826 dfn0s2 28200 ajfuni 30761 funadj 31788 rabexgfGS 32401 abrexdomjm 32409 ballotth 34502 bnj1133 34952 satfv0fun 35331 fmla0xp 35343 dfon3 35853 fnsingle 35880 dfiota3 35884 hftr 36143 bj-rabtrALT 36892 ismblfin 37628 abrexdom 37697 cllem0 43528 cotrintab 43576 brtrclfv2 43689 snhesn 43748 psshepw 43750 k0004val0 44116 scottabf 44202 compab 44404 onfrALT 44512 dvcosre 45883 upwordnul 46851 upwordsing 46855 cfsetssfset 47030 alimp-surprise 49742 |
| Copyright terms: Public domain | W3C validator |