![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mpgbir | Structured version Visualization version GIF version |
Description: Modus ponens on biconditional combined with generalization. (Contributed by NM, 24-May-1994.) (Proof shortened by Stefan Allan, 28-Oct-2008.) |
Ref | Expression |
---|---|
mpgbir.1 | ⊢ (𝜑 ↔ ∀𝑥𝜓) |
mpgbir.2 | ⊢ 𝜓 |
Ref | Expression |
---|---|
mpgbir | ⊢ 𝜑 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mpgbir.2 | . . 3 ⊢ 𝜓 | |
2 | 1 | ax-gen 1791 | . 2 ⊢ ∀𝑥𝜓 |
3 | mpgbir.1 | . 2 ⊢ (𝜑 ↔ ∀𝑥𝜓) | |
4 | 2, 3 | mpbir 231 | 1 ⊢ 𝜑 |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 ∀wal 1534 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 |
This theorem depends on definitions: df-bi 207 |
This theorem is referenced by: cvjust 2728 eqriv 2731 nfci 2890 abid2f 2933 abid2fOLD 2934 rgen 3060 rabeqcOLD 3692 ssriv 3998 nel0 4359 rab0 4391 ssmin 4971 intab 4982 iunab 5055 iinab 5072 sndisj 5139 disjxsn 5141 abex 5331 intidOLD 5468 fr0 5666 relssi 5799 dmi 5934 dmep 5936 onfr 6424 funopabeq 6603 isarep2 6658 opabiotafun 6988 fvopab3ig 7011 opabex 7239 caovmo 7669 trom 7895 tz7.44lem1 8443 pwfir 9352 dfsup2 9481 zfregfr 9642 dfom3 9684 dfttrcl2 9761 trcl 9765 tc2 9779 rankf 9831 rankval4 9904 uniwun 10777 dfnn2 12276 dfuzi 12706 fzodisj 13729 fzodisjsn 13733 cycsubg 19238 efger 19750 made0 27926 lrrecfr 27990 dfn0s2 28350 ajfuni 30887 funadj 31914 rabexgfGS 32526 abrexdomjm 32534 ballotth 34518 bnj1133 34981 satfv0fun 35355 fmla0xp 35367 dfon3 35873 fnsingle 35900 dfiota3 35904 hftr 36163 bj-rabtrALT 36913 ismblfin 37647 abrexdom 37716 cllem0 43555 cotrintab 43603 brtrclfv2 43716 snhesn 43775 psshepw 43777 k0004val0 44143 scottabf 44235 compab 44437 onfrALT 44546 dvcosre 45867 upwordnul 46833 upwordsing 46837 cfsetssfset 47005 alimp-surprise 49010 |
Copyright terms: Public domain | W3C validator |