![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mpgbir | Structured version Visualization version GIF version |
Description: Modus ponens on biconditional combined with generalization. (Contributed by NM, 24-May-1994.) (Proof shortened by Stefan Allan, 28-Oct-2008.) |
Ref | Expression |
---|---|
mpgbir.1 | ⊢ (𝜑 ↔ ∀𝑥𝜓) |
mpgbir.2 | ⊢ 𝜓 |
Ref | Expression |
---|---|
mpgbir | ⊢ 𝜑 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mpgbir.2 | . . 3 ⊢ 𝜓 | |
2 | 1 | ax-gen 1798 | . 2 ⊢ ∀𝑥𝜓 |
3 | mpgbir.1 | . 2 ⊢ (𝜑 ↔ ∀𝑥𝜓) | |
4 | 2, 3 | mpbir 230 | 1 ⊢ 𝜑 |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∀wal 1540 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 |
This theorem depends on definitions: df-bi 206 |
This theorem is referenced by: cvjust 2727 eqriv 2730 nfci 2887 abid2f 2937 abid2fOLD 2938 rgen 3064 rabeqcOLD 3682 ssriv 3987 ss2abiOLD 4065 nel0 4351 rab0 4383 abfOLD 4404 ssmin 4972 intab 4983 iunab 5055 iinab 5072 sndisj 5140 disjxsn 5142 intidOLD 5459 fr0 5656 relssi 5788 dmi 5922 dmep 5924 onfr 6404 funopabeq 6585 isarep2 6640 opabiotafun 6973 fvopab3ig 6995 opabex 7222 caovmo 7644 trom 7864 tz7.44lem1 8405 pwfir 9176 dfsup2 9439 zfregfr 9600 dfom3 9642 dfttrcl2 9719 trcl 9723 tc2 9737 rankf 9789 rankval4 9862 uniwun 10735 dfnn2 12225 dfuzi 12653 fzodisj 13666 fzodisjsn 13670 cycsubg 19085 efger 19586 made0 27369 lrrecfr 27429 dfn0s2 27705 ajfuni 30143 funadj 31170 rabexgfGS 31770 abrexdomjm 31775 ballotth 33567 bnj1133 34031 satfv0fun 34393 fmla0xp 34405 dfon3 34895 fnsingle 34922 dfiota3 34926 hftr 35185 bj-rabtrALT 35859 ismblfin 36577 abrexdom 36646 cllem0 42365 cotrintab 42413 brtrclfv2 42526 snhesn 42585 psshepw 42587 k0004val0 42953 scottabf 43047 compab 43249 onfrALT 43358 dvcosre 44676 upwordnul 45642 upwordsing 45646 cfsetssfset 45814 alimp-surprise 47875 |
Copyright terms: Public domain | W3C validator |