| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mpgbir | Structured version Visualization version GIF version | ||
| Description: Modus ponens on biconditional combined with generalization. (Contributed by NM, 24-May-1994.) (Proof shortened by Stefan Allan, 28-Oct-2008.) |
| Ref | Expression |
|---|---|
| mpgbir.1 | ⊢ (𝜑 ↔ ∀𝑥𝜓) |
| mpgbir.2 | ⊢ 𝜓 |
| Ref | Expression |
|---|---|
| mpgbir | ⊢ 𝜑 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mpgbir.2 | . . 3 ⊢ 𝜓 | |
| 2 | 1 | ax-gen 1795 | . 2 ⊢ ∀𝑥𝜓 |
| 3 | mpgbir.1 | . 2 ⊢ (𝜑 ↔ ∀𝑥𝜓) | |
| 4 | 2, 3 | mpbir 231 | 1 ⊢ 𝜑 |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∀wal 1538 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 |
| This theorem depends on definitions: df-bi 207 |
| This theorem is referenced by: sbt 2066 cvjust 2729 eqriv 2732 nfci 2886 abid2f 2929 abid2fOLD 2930 rgen 3053 rabeqcOLD 3669 ssriv 3962 nel0 4329 rab0 4361 ssmin 4943 intab 4954 iunab 5027 iinab 5044 sndisj 5111 disjxsn 5113 abex 5296 intidOLD 5433 fr0 5632 relssi 5766 dmi 5901 dmep 5903 onfr 6391 funopabeq 6571 isarep2 6627 opabiotafun 6958 fvopab3ig 6981 opabex 7211 caovmo 7642 trom 7868 tz7.44lem1 8417 pwfir 9325 dfsup2 9454 zfregfr 9617 dfom3 9659 dfttrcl2 9736 trcl 9740 tc2 9754 rankf 9806 rankval4 9879 uniwun 10752 dfnn2 12251 dfuzi 12682 fzodisj 13708 fzodisjsn 13712 cycsubg 19189 efger 19697 made0 27829 lrrecfr 27893 dfn0s2 28253 ajfuni 30786 funadj 31813 rabexgfGS 32426 abrexdomjm 32434 ballotth 34516 bnj1133 34966 satfv0fun 35339 fmla0xp 35351 dfon3 35856 fnsingle 35883 dfiota3 35887 hftr 36146 bj-rabtrALT 36895 ismblfin 37631 abrexdom 37700 cllem0 43537 cotrintab 43585 brtrclfv2 43698 snhesn 43757 psshepw 43759 k0004val0 44125 scottabf 44212 compab 44414 onfrALT 44522 dvcosre 45889 upwordnul 46857 upwordsing 46861 cfsetssfset 47033 alimp-surprise 49592 |
| Copyright terms: Public domain | W3C validator |