| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mpgbir | Structured version Visualization version GIF version | ||
| Description: Modus ponens on biconditional combined with generalization. (Contributed by NM, 24-May-1994.) (Proof shortened by Stefan Allan, 28-Oct-2008.) |
| Ref | Expression |
|---|---|
| mpgbir.1 | ⊢ (𝜑 ↔ ∀𝑥𝜓) |
| mpgbir.2 | ⊢ 𝜓 |
| Ref | Expression |
|---|---|
| mpgbir | ⊢ 𝜑 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mpgbir.2 | . . 3 ⊢ 𝜓 | |
| 2 | 1 | ax-gen 1796 | . 2 ⊢ ∀𝑥𝜓 |
| 3 | mpgbir.1 | . 2 ⊢ (𝜑 ↔ ∀𝑥𝜓) | |
| 4 | 2, 3 | mpbir 231 | 1 ⊢ 𝜑 |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∀wal 1539 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 |
| This theorem depends on definitions: df-bi 207 |
| This theorem is referenced by: sbt 2069 cvjust 2725 eqriv 2728 nfci 2882 abid2f 2925 abid2fOLD 2926 rgen 3049 ssriv 3933 nel0 4301 rab0 4333 ssmin 4915 intab 4926 iunab 4998 iinab 5014 sndisj 5081 disjxsn 5083 abex 5262 fr0 5592 relssi 5726 dmi 5860 dmep 5862 onfr 6345 funopabeq 6517 isarep2 6571 opabiotafun 6902 fvopab3ig 6925 opabex 7154 caovmo 7583 trom 7805 tz7.44lem1 8324 pwfir 9201 dfsup2 9328 zfregfr 9494 dfom3 9537 dfttrcl2 9614 trcl 9618 tc2 9630 rankf 9687 rankval4 9760 uniwun 10631 dfnn2 12138 dfuzi 12564 fzodisj 13593 fzodisjsn 13597 cycsubg 19120 efger 19630 made0 27818 lrrecfr 27886 dfn0s2 28260 ajfuni 30839 funadj 31866 rabexgfGS 32479 abrexdomjm 32487 ballotth 34551 bnj1133 35001 satfv0fun 35415 fmla0xp 35427 dfon3 35934 fnsingle 35961 dfiota3 35965 hftr 36224 bj-rabtrALT 36973 ismblfin 37709 abrexdom 37778 cllem0 43607 cotrintab 43655 brtrclfv2 43768 snhesn 43827 psshepw 43829 k0004val0 44195 scottabf 44281 compab 44482 onfrALT 44590 dvcosre 45958 cfsetssfset 47095 alimp-surprise 49820 |
| Copyright terms: Public domain | W3C validator |