Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > xchnxbi | Structured version Visualization version GIF version |
Description: Replacement of a subexpression by an equivalent one. (Contributed by Wolf Lammen, 27-Sep-2014.) |
Ref | Expression |
---|---|
xchnxbi.1 | ⊢ (¬ 𝜑 ↔ 𝜓) |
xchnxbi.2 | ⊢ (𝜑 ↔ 𝜒) |
Ref | Expression |
---|---|
xchnxbi | ⊢ (¬ 𝜒 ↔ 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xchnxbi.2 | . . 3 ⊢ (𝜑 ↔ 𝜒) | |
2 | 1 | notbii 323 | . 2 ⊢ (¬ 𝜑 ↔ ¬ 𝜒) |
3 | xchnxbi.1 | . 2 ⊢ (¬ 𝜑 ↔ 𝜓) | |
4 | 2, 3 | bitr3i 280 | 1 ⊢ (¬ 𝜒 ↔ 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 209 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 210 |
This theorem is referenced by: xchnxbir 336 ioran 981 pm5.24 1047 2mo 2670 necon1bbii 3001 nabbi 3054 psslinpr 10505 |
Copyright terms: Public domain | W3C validator |