MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xchnxbi Structured version   Visualization version   GIF version

Theorem xchnxbi 335
Description: Replacement of a subexpression by an equivalent one. (Contributed by Wolf Lammen, 27-Sep-2014.)
Hypotheses
Ref Expression
xchnxbi.1 𝜑𝜓)
xchnxbi.2 (𝜑𝜒)
Assertion
Ref Expression
xchnxbi 𝜒𝜓)

Proof of Theorem xchnxbi
StepHypRef Expression
1 xchnxbi.2 . . 3 (𝜑𝜒)
21notbii 323 . 2 𝜑 ↔ ¬ 𝜒)
3 xchnxbi.1 . 2 𝜑𝜓)
42, 3bitr3i 280 1 𝜒𝜓)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 209
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 210
This theorem is referenced by:  xchnxbir  336  ioran  981  pm5.24  1047  2mo  2670  necon1bbii  3001  nabbi  3054  psslinpr  10505
  Copyright terms: Public domain W3C validator