|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > xchnxbi | Structured version Visualization version GIF version | ||
| Description: Replacement of a subexpression by an equivalent one. (Contributed by Wolf Lammen, 27-Sep-2014.) | 
| Ref | Expression | 
|---|---|
| xchnxbi.1 | ⊢ (¬ 𝜑 ↔ 𝜓) | 
| xchnxbi.2 | ⊢ (𝜑 ↔ 𝜒) | 
| Ref | Expression | 
|---|---|
| xchnxbi | ⊢ (¬ 𝜒 ↔ 𝜓) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | xchnxbi.2 | . . 3 ⊢ (𝜑 ↔ 𝜒) | |
| 2 | 1 | notbii 320 | . 2 ⊢ (¬ 𝜑 ↔ ¬ 𝜒) | 
| 3 | xchnxbi.1 | . 2 ⊢ (¬ 𝜑 ↔ 𝜓) | |
| 4 | 2, 3 | bitr3i 277 | 1 ⊢ (¬ 𝜒 ↔ 𝜓) | 
| Colors of variables: wff setvar class | 
| Syntax hints: ¬ wn 3 ↔ wb 206 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 | 
| This theorem depends on definitions: df-bi 207 | 
| This theorem is referenced by: xchnxbir 333 ioran 985 pm5.24 1050 2mo 2647 necon1bbii 2989 notabw 4312 psslinpr 11072 | 
| Copyright terms: Public domain | W3C validator |