MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  psslinpr Structured version   Visualization version   GIF version

Theorem psslinpr 11028
Description: Proper subset is a linear ordering on positive reals. Part of Proposition 9-3.3 of [Gleason] p. 122. (Contributed by NM, 25-Feb-1996.) (New usage is discouraged.)
Assertion
Ref Expression
psslinpr ((𝐴P𝐵P) → (𝐴𝐵𝐴 = 𝐵𝐵𝐴))

Proof of Theorem psslinpr
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elprnq 10988 . . . . . . . . . . . . 13 ((𝐴P𝑥𝐴) → 𝑥Q)
2 prub 10991 . . . . . . . . . . . . 13 (((𝐵P𝑦𝐵) ∧ 𝑥Q) → (¬ 𝑥𝐵𝑦 <Q 𝑥))
31, 2sylan2 591 . . . . . . . . . . . 12 (((𝐵P𝑦𝐵) ∧ (𝐴P𝑥𝐴)) → (¬ 𝑥𝐵𝑦 <Q 𝑥))
4 prcdnq 10990 . . . . . . . . . . . . 13 ((𝐴P𝑥𝐴) → (𝑦 <Q 𝑥𝑦𝐴))
54adantl 480 . . . . . . . . . . . 12 (((𝐵P𝑦𝐵) ∧ (𝐴P𝑥𝐴)) → (𝑦 <Q 𝑥𝑦𝐴))
63, 5syld 47 . . . . . . . . . . 11 (((𝐵P𝑦𝐵) ∧ (𝐴P𝑥𝐴)) → (¬ 𝑥𝐵𝑦𝐴))
76exp43 435 . . . . . . . . . 10 (𝐵P → (𝑦𝐵 → (𝐴P → (𝑥𝐴 → (¬ 𝑥𝐵𝑦𝐴)))))
87com3r 87 . . . . . . . . 9 (𝐴P → (𝐵P → (𝑦𝐵 → (𝑥𝐴 → (¬ 𝑥𝐵𝑦𝐴)))))
98imp 405 . . . . . . . 8 ((𝐴P𝐵P) → (𝑦𝐵 → (𝑥𝐴 → (¬ 𝑥𝐵𝑦𝐴))))
109imp4a 421 . . . . . . 7 ((𝐴P𝐵P) → (𝑦𝐵 → ((𝑥𝐴 ∧ ¬ 𝑥𝐵) → 𝑦𝐴)))
1110com23 86 . . . . . 6 ((𝐴P𝐵P) → ((𝑥𝐴 ∧ ¬ 𝑥𝐵) → (𝑦𝐵𝑦𝐴)))
1211alrimdv 1930 . . . . 5 ((𝐴P𝐵P) → ((𝑥𝐴 ∧ ¬ 𝑥𝐵) → ∀𝑦(𝑦𝐵𝑦𝐴)))
1312exlimdv 1934 . . . 4 ((𝐴P𝐵P) → (∃𝑥(𝑥𝐴 ∧ ¬ 𝑥𝐵) → ∀𝑦(𝑦𝐵𝑦𝐴)))
14 nss 4045 . . . . 5 𝐴𝐵 ↔ ∃𝑥(𝑥𝐴 ∧ ¬ 𝑥𝐵))
15 sspss 4098 . . . . 5 (𝐴𝐵 ↔ (𝐴𝐵𝐴 = 𝐵))
1614, 15xchnxbi 331 . . . 4 (¬ (𝐴𝐵𝐴 = 𝐵) ↔ ∃𝑥(𝑥𝐴 ∧ ¬ 𝑥𝐵))
17 sspss 4098 . . . . 5 (𝐵𝐴 ↔ (𝐵𝐴𝐵 = 𝐴))
18 dfss2 3967 . . . . 5 (𝐵𝐴 ↔ ∀𝑦(𝑦𝐵𝑦𝐴))
1917, 18bitr3i 276 . . . 4 ((𝐵𝐴𝐵 = 𝐴) ↔ ∀𝑦(𝑦𝐵𝑦𝐴))
2013, 16, 193imtr4g 295 . . 3 ((𝐴P𝐵P) → (¬ (𝐴𝐵𝐴 = 𝐵) → (𝐵𝐴𝐵 = 𝐴)))
2120orrd 859 . 2 ((𝐴P𝐵P) → ((𝐴𝐵𝐴 = 𝐵) ∨ (𝐵𝐴𝐵 = 𝐴)))
22 df-3or 1086 . . 3 ((𝐴𝐵𝐴 = 𝐵𝐵𝐴) ↔ ((𝐴𝐵𝐴 = 𝐵) ∨ 𝐵𝐴))
23 or32 922 . . 3 (((𝐴𝐵𝐴 = 𝐵) ∨ 𝐵𝐴) ↔ ((𝐴𝐵𝐵𝐴) ∨ 𝐴 = 𝐵))
24 orordir 926 . . . 4 (((𝐴𝐵𝐵𝐴) ∨ 𝐴 = 𝐵) ↔ ((𝐴𝐵𝐴 = 𝐵) ∨ (𝐵𝐴𝐴 = 𝐵)))
25 eqcom 2737 . . . . . 6 (𝐵 = 𝐴𝐴 = 𝐵)
2625orbi2i 909 . . . . 5 ((𝐵𝐴𝐵 = 𝐴) ↔ (𝐵𝐴𝐴 = 𝐵))
2726orbi2i 909 . . . 4 (((𝐴𝐵𝐴 = 𝐵) ∨ (𝐵𝐴𝐵 = 𝐴)) ↔ ((𝐴𝐵𝐴 = 𝐵) ∨ (𝐵𝐴𝐴 = 𝐵)))
2824, 27bitr4i 277 . . 3 (((𝐴𝐵𝐵𝐴) ∨ 𝐴 = 𝐵) ↔ ((𝐴𝐵𝐴 = 𝐵) ∨ (𝐵𝐴𝐵 = 𝐴)))
2922, 23, 283bitri 296 . 2 ((𝐴𝐵𝐴 = 𝐵𝐵𝐴) ↔ ((𝐴𝐵𝐴 = 𝐵) ∨ (𝐵𝐴𝐵 = 𝐴)))
3021, 29sylibr 233 1 ((𝐴P𝐵P) → (𝐴𝐵𝐴 = 𝐵𝐵𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 394  wo 843  w3o 1084  wal 1537   = wceq 1539  wex 1779  wcel 2104  wss 3947  wpss 3948   class class class wbr 5147  Qcnq 10849   <Q cltq 10855  Pcnp 10856
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2701  ax-sep 5298  ax-nul 5305  ax-pr 5426  ax-un 7727
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2532  df-eu 2561  df-clab 2708  df-cleq 2722  df-clel 2808  df-nfc 2883  df-ne 2939  df-ral 3060  df-rex 3069  df-rmo 3374  df-reu 3375  df-rab 3431  df-v 3474  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-pred 6299  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-ov 7414  df-oprab 7415  df-mpo 7416  df-om 7858  df-1st 7977  df-2nd 7978  df-frecs 8268  df-wrecs 8299  df-recs 8373  df-rdg 8412  df-oadd 8472  df-omul 8473  df-er 8705  df-ni 10869  df-mi 10871  df-lti 10872  df-ltpq 10907  df-enq 10908  df-nq 10909  df-ltnq 10915  df-np 10978
This theorem is referenced by:  ltsopr  11029
  Copyright terms: Public domain W3C validator