MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  psslinpr Structured version   Visualization version   GIF version

Theorem psslinpr 10106
Description: Proper subset is a linear ordering on positive reals. Part of Proposition 9-3.3 of [Gleason] p. 122. (Contributed by NM, 25-Feb-1996.) (New usage is discouraged.)
Assertion
Ref Expression
psslinpr ((𝐴P𝐵P) → (𝐴𝐵𝐴 = 𝐵𝐵𝐴))

Proof of Theorem psslinpr
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elprnq 10066 . . . . . . . . . . . . 13 ((𝐴P𝑥𝐴) → 𝑥Q)
2 prub 10069 . . . . . . . . . . . . 13 (((𝐵P𝑦𝐵) ∧ 𝑥Q) → (¬ 𝑥𝐵𝑦 <Q 𝑥))
31, 2sylan2 586 . . . . . . . . . . . 12 (((𝐵P𝑦𝐵) ∧ (𝐴P𝑥𝐴)) → (¬ 𝑥𝐵𝑦 <Q 𝑥))
4 prcdnq 10068 . . . . . . . . . . . . 13 ((𝐴P𝑥𝐴) → (𝑦 <Q 𝑥𝑦𝐴))
54adantl 473 . . . . . . . . . . . 12 (((𝐵P𝑦𝐵) ∧ (𝐴P𝑥𝐴)) → (𝑦 <Q 𝑥𝑦𝐴))
63, 5syld 47 . . . . . . . . . . 11 (((𝐵P𝑦𝐵) ∧ (𝐴P𝑥𝐴)) → (¬ 𝑥𝐵𝑦𝐴))
76exp43 427 . . . . . . . . . 10 (𝐵P → (𝑦𝐵 → (𝐴P → (𝑥𝐴 → (¬ 𝑥𝐵𝑦𝐴)))))
87com3r 87 . . . . . . . . 9 (𝐴P → (𝐵P → (𝑦𝐵 → (𝑥𝐴 → (¬ 𝑥𝐵𝑦𝐴)))))
98imp 395 . . . . . . . 8 ((𝐴P𝐵P) → (𝑦𝐵 → (𝑥𝐴 → (¬ 𝑥𝐵𝑦𝐴))))
109imp4a 413 . . . . . . 7 ((𝐴P𝐵P) → (𝑦𝐵 → ((𝑥𝐴 ∧ ¬ 𝑥𝐵) → 𝑦𝐴)))
1110com23 86 . . . . . 6 ((𝐴P𝐵P) → ((𝑥𝐴 ∧ ¬ 𝑥𝐵) → (𝑦𝐵𝑦𝐴)))
1211alrimdv 2024 . . . . 5 ((𝐴P𝐵P) → ((𝑥𝐴 ∧ ¬ 𝑥𝐵) → ∀𝑦(𝑦𝐵𝑦𝐴)))
1312exlimdv 2028 . . . 4 ((𝐴P𝐵P) → (∃𝑥(𝑥𝐴 ∧ ¬ 𝑥𝐵) → ∀𝑦(𝑦𝐵𝑦𝐴)))
14 nss 3823 . . . . 5 𝐴𝐵 ↔ ∃𝑥(𝑥𝐴 ∧ ¬ 𝑥𝐵))
15 sspss 3867 . . . . 5 (𝐴𝐵 ↔ (𝐴𝐵𝐴 = 𝐵))
1614, 15xchnxbi 323 . . . 4 (¬ (𝐴𝐵𝐴 = 𝐵) ↔ ∃𝑥(𝑥𝐴 ∧ ¬ 𝑥𝐵))
17 sspss 3867 . . . . 5 (𝐵𝐴 ↔ (𝐵𝐴𝐵 = 𝐴))
18 dfss2 3749 . . . . 5 (𝐵𝐴 ↔ ∀𝑦(𝑦𝐵𝑦𝐴))
1917, 18bitr3i 268 . . . 4 ((𝐵𝐴𝐵 = 𝐴) ↔ ∀𝑦(𝑦𝐵𝑦𝐴))
2013, 16, 193imtr4g 287 . . 3 ((𝐴P𝐵P) → (¬ (𝐴𝐵𝐴 = 𝐵) → (𝐵𝐴𝐵 = 𝐴)))
2120orrd 889 . 2 ((𝐴P𝐵P) → ((𝐴𝐵𝐴 = 𝐵) ∨ (𝐵𝐴𝐵 = 𝐴)))
22 df-3or 1108 . . 3 ((𝐴𝐵𝐴 = 𝐵𝐵𝐴) ↔ ((𝐴𝐵𝐴 = 𝐵) ∨ 𝐵𝐴))
23 or32 949 . . 3 (((𝐴𝐵𝐴 = 𝐵) ∨ 𝐵𝐴) ↔ ((𝐴𝐵𝐵𝐴) ∨ 𝐴 = 𝐵))
24 orordir 953 . . . 4 (((𝐴𝐵𝐵𝐴) ∨ 𝐴 = 𝐵) ↔ ((𝐴𝐵𝐴 = 𝐵) ∨ (𝐵𝐴𝐴 = 𝐵)))
25 eqcom 2772 . . . . . 6 (𝐵 = 𝐴𝐴 = 𝐵)
2625orbi2i 936 . . . . 5 ((𝐵𝐴𝐵 = 𝐴) ↔ (𝐵𝐴𝐴 = 𝐵))
2726orbi2i 936 . . . 4 (((𝐴𝐵𝐴 = 𝐵) ∨ (𝐵𝐴𝐵 = 𝐴)) ↔ ((𝐴𝐵𝐴 = 𝐵) ∨ (𝐵𝐴𝐴 = 𝐵)))
2824, 27bitr4i 269 . . 3 (((𝐴𝐵𝐵𝐴) ∨ 𝐴 = 𝐵) ↔ ((𝐴𝐵𝐴 = 𝐵) ∨ (𝐵𝐴𝐵 = 𝐴)))
2922, 23, 283bitri 288 . 2 ((𝐴𝐵𝐴 = 𝐵𝐵𝐴) ↔ ((𝐴𝐵𝐴 = 𝐵) ∨ (𝐵𝐴𝐵 = 𝐴)))
3021, 29sylibr 225 1 ((𝐴P𝐵P) → (𝐴𝐵𝐴 = 𝐵𝐵𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 384  wo 873  w3o 1106  wal 1650   = wceq 1652  wex 1874  wcel 2155  wss 3732  wpss 3733   class class class wbr 4809  Qcnq 9927   <Q cltq 9933  Pcnp 9934
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1890  ax-4 1904  ax-5 2005  ax-6 2070  ax-7 2105  ax-8 2157  ax-9 2164  ax-10 2183  ax-11 2198  ax-12 2211  ax-13 2352  ax-ext 2743  ax-sep 4941  ax-nul 4949  ax-pow 5001  ax-pr 5062  ax-un 7147
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 874  df-3or 1108  df-3an 1109  df-tru 1656  df-ex 1875  df-nf 1879  df-sb 2063  df-mo 2565  df-eu 2582  df-clab 2752  df-cleq 2758  df-clel 2761  df-nfc 2896  df-ne 2938  df-ral 3060  df-rex 3061  df-reu 3062  df-rmo 3063  df-rab 3064  df-v 3352  df-sbc 3597  df-csb 3692  df-dif 3735  df-un 3737  df-in 3739  df-ss 3746  df-pss 3748  df-nul 4080  df-if 4244  df-pw 4317  df-sn 4335  df-pr 4337  df-tp 4339  df-op 4341  df-uni 4595  df-iun 4678  df-br 4810  df-opab 4872  df-mpt 4889  df-tr 4912  df-id 5185  df-eprel 5190  df-po 5198  df-so 5199  df-fr 5236  df-we 5238  df-xp 5283  df-rel 5284  df-cnv 5285  df-co 5286  df-dm 5287  df-rn 5288  df-res 5289  df-ima 5290  df-pred 5865  df-ord 5911  df-on 5912  df-lim 5913  df-suc 5914  df-iota 6031  df-fun 6070  df-fn 6071  df-f 6072  df-f1 6073  df-fo 6074  df-f1o 6075  df-fv 6076  df-ov 6845  df-oprab 6846  df-mpt2 6847  df-om 7264  df-1st 7366  df-2nd 7367  df-wrecs 7610  df-recs 7672  df-rdg 7710  df-oadd 7768  df-omul 7769  df-er 7947  df-ni 9947  df-mi 9949  df-lti 9950  df-ltpq 9985  df-enq 9986  df-nq 9987  df-ltnq 9993  df-np 10056
This theorem is referenced by:  ltsopr  10107
  Copyright terms: Public domain W3C validator