Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > necon1bbii | Structured version Visualization version GIF version |
Description: Contrapositive inference for inequality. (Contributed by NM, 17-Mar-2007.) (Proof shortened by Wolf Lammen, 24-Nov-2019.) |
Ref | Expression |
---|---|
necon1bbii.1 | ⊢ (𝐴 ≠ 𝐵 ↔ 𝜑) |
Ref | Expression |
---|---|
necon1bbii | ⊢ (¬ 𝜑 ↔ 𝐴 = 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nne 2948 | . 2 ⊢ (¬ 𝐴 ≠ 𝐵 ↔ 𝐴 = 𝐵) | |
2 | necon1bbii.1 | . 2 ⊢ (𝐴 ≠ 𝐵 ↔ 𝜑) | |
3 | 1, 2 | xchnxbi 331 | 1 ⊢ (¬ 𝜑 ↔ 𝐴 = 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 205 = wceq 1541 ≠ wne 2944 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-ne 2945 |
This theorem is referenced by: necon2bbii 2996 intnex 5265 class2set 5279 csbopab 5469 relimasn 5989 modom 8985 supval2 9175 fzo0 13392 vma1 26296 lgsquadlem3 26511 ordtconnlem1 31853 |
Copyright terms: Public domain | W3C validator |