MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  necon1bbii Structured version   Visualization version   GIF version

Theorem necon1bbii 2996
Description: Contrapositive inference for inequality. (Contributed by NM, 17-Mar-2007.) (Proof shortened by Wolf Lammen, 24-Nov-2019.)
Hypothesis
Ref Expression
necon1bbii.1 (𝐴𝐵𝜑)
Assertion
Ref Expression
necon1bbii 𝜑𝐴 = 𝐵)

Proof of Theorem necon1bbii
StepHypRef Expression
1 nne 2950 . 2 𝐴𝐵𝐴 = 𝐵)
2 necon1bbii.1 . 2 (𝐴𝐵𝜑)
31, 2xchnxbi 332 1 𝜑𝐴 = 𝐵)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 206   = wceq 1537  wne 2946
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-ne 2947
This theorem is referenced by:  necon2bbii  2998  intnex  5363  class2set  5373  csbopab  5574  relimasn  6114  modom  9307  supval2  9524  fzo0  13740  vma1  27227  lgsquadlem3  27444  ordtconnlem1  33870
  Copyright terms: Public domain W3C validator