| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > necon1bbii | Structured version Visualization version GIF version | ||
| Description: Contrapositive inference for inequality. (Contributed by NM, 17-Mar-2007.) (Proof shortened by Wolf Lammen, 24-Nov-2019.) |
| Ref | Expression |
|---|---|
| necon1bbii.1 | ⊢ (𝐴 ≠ 𝐵 ↔ 𝜑) |
| Ref | Expression |
|---|---|
| necon1bbii | ⊢ (¬ 𝜑 ↔ 𝐴 = 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nne 2937 | . 2 ⊢ (¬ 𝐴 ≠ 𝐵 ↔ 𝐴 = 𝐵) | |
| 2 | necon1bbii.1 | . 2 ⊢ (𝐴 ≠ 𝐵 ↔ 𝜑) | |
| 3 | 1, 2 | xchnxbi 332 | 1 ⊢ (¬ 𝜑 ↔ 𝐴 = 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ↔ wb 206 = wceq 1540 ≠ wne 2933 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-ne 2934 |
| This theorem is referenced by: necon2bbii 2984 intnex 5320 class2set 5330 csbopab 5535 relimasn 6077 modom 9257 supval2 9472 fzo0 13705 vma1 27133 lgsquadlem3 27350 ordtconnlem1 33960 |
| Copyright terms: Public domain | W3C validator |