| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sylnbir | Structured version Visualization version GIF version | ||
| Description: A mixed syllogism inference from a biconditional and an implication. (Contributed by Wolf Lammen, 16-Dec-2013.) |
| Ref | Expression |
|---|---|
| sylnbir.1 | ⊢ (𝜓 ↔ 𝜑) |
| sylnbir.2 | ⊢ (¬ 𝜓 → 𝜒) |
| Ref | Expression |
|---|---|
| sylnbir | ⊢ (¬ 𝜑 → 𝜒) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sylnbir.1 | . . 3 ⊢ (𝜓 ↔ 𝜑) | |
| 2 | 1 | bicomi 224 | . 2 ⊢ (𝜑 ↔ 𝜓) |
| 3 | sylnbir.2 | . 2 ⊢ (¬ 𝜓 → 𝜒) | |
| 4 | 2, 3 | sylnbi 330 | 1 ⊢ (¬ 𝜑 → 𝜒) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 |
| This theorem is referenced by: naecoms 2434 fvmptex 7005 f0cli 7093 1st2val 8021 2nd2val 8022 mpoxopxprcov0 8221 rankvaln 9818 alephcard 10089 alephnbtwn 10090 cfub 10268 cardcf 10271 cflecard 10272 cfle 10273 cflim2 10282 cfidm 10294 itunitc1 10439 ituniiun 10441 domtriom 10462 alephreg 10601 pwcfsdom 10602 cfpwsdom 10603 adderpq 10975 mulerpq 10976 sumz 15743 sumss 15745 prod1 15965 prodss 15968 newval 27820 leftval 27828 rightval 27829 lltropt 27841 madess 27845 oldssmade 27846 lrold 27865 fpwfvss 43403 grur1cld 44223 afvres 47168 afvco2 47172 ndmaovcl 47199 initopropdlemlem 49123 initopropd 49127 termopropd 49128 zeroopropd 49129 |
| Copyright terms: Public domain | W3C validator |