Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > sylnbir | Structured version Visualization version GIF version |
Description: A mixed syllogism inference from a biconditional and an implication. (Contributed by Wolf Lammen, 16-Dec-2013.) |
Ref | Expression |
---|---|
sylnbir.1 | ⊢ (𝜓 ↔ 𝜑) |
sylnbir.2 | ⊢ (¬ 𝜓 → 𝜒) |
Ref | Expression |
---|---|
sylnbir | ⊢ (¬ 𝜑 → 𝜒) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sylnbir.1 | . . 3 ⊢ (𝜓 ↔ 𝜑) | |
2 | 1 | bicomi 223 | . 2 ⊢ (𝜑 ↔ 𝜓) |
3 | sylnbir.2 | . 2 ⊢ (¬ 𝜓 → 𝜒) | |
4 | 2, 3 | sylnbi 330 | 1 ⊢ (¬ 𝜑 → 𝜒) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 |
This theorem is referenced by: naecoms 2429 fvmptex 6889 f0cli 6974 1st2val 7859 2nd2val 7860 mpoxopxprcov0 8033 rankvaln 9557 alephcard 9826 alephnbtwn 9827 cfub 10005 cardcf 10008 cflecard 10009 cfle 10010 cflim2 10019 cfidm 10031 itunitc1 10176 ituniiun 10178 domtriom 10199 alephreg 10338 pwcfsdom 10339 cfpwsdom 10340 adderpq 10712 mulerpq 10713 sumz 15434 sumss 15436 prod1 15654 prodss 15657 newval 34039 leftval 34047 rightval 34048 madess 34059 oldssmade 34060 lrold 34077 sn-00id 40384 grur1cld 41850 afvres 44664 afvco2 44668 ndmaovcl 44695 |
Copyright terms: Public domain | W3C validator |