| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sylnbir | Structured version Visualization version GIF version | ||
| Description: A mixed syllogism inference from a biconditional and an implication. (Contributed by Wolf Lammen, 16-Dec-2013.) |
| Ref | Expression |
|---|---|
| sylnbir.1 | ⊢ (𝜓 ↔ 𝜑) |
| sylnbir.2 | ⊢ (¬ 𝜓 → 𝜒) |
| Ref | Expression |
|---|---|
| sylnbir | ⊢ (¬ 𝜑 → 𝜒) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sylnbir.1 | . . 3 ⊢ (𝜓 ↔ 𝜑) | |
| 2 | 1 | bicomi 224 | . 2 ⊢ (𝜑 ↔ 𝜓) |
| 3 | sylnbir.2 | . 2 ⊢ (¬ 𝜓 → 𝜒) | |
| 4 | 2, 3 | sylnbi 330 | 1 ⊢ (¬ 𝜑 → 𝜒) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 |
| This theorem is referenced by: naecoms 2427 fvmptex 6964 f0cli 7052 1st2val 7975 2nd2val 7976 mpoxopxprcov0 8173 rankvaln 9728 alephcard 9999 alephnbtwn 10000 cfub 10178 cardcf 10181 cflecard 10182 cfle 10183 cflim2 10192 cfidm 10204 itunitc1 10349 ituniiun 10351 domtriom 10372 alephreg 10511 pwcfsdom 10512 cfpwsdom 10513 adderpq 10885 mulerpq 10886 sumz 15664 sumss 15666 prod1 15886 prodss 15889 newval 27800 leftval 27808 rightval 27809 lltropt 27821 madess 27825 oldssmade 27826 oldss 27827 lrold 27846 fpwfvss 43394 grur1cld 44214 afvres 47166 afvco2 47170 ndmaovcl 47197 initopropdlemlem 49221 initopropd 49225 termopropd 49226 zeroopropd 49227 |
| Copyright terms: Public domain | W3C validator |