| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sylnbir | Structured version Visualization version GIF version | ||
| Description: A mixed syllogism inference from a biconditional and an implication. (Contributed by Wolf Lammen, 16-Dec-2013.) |
| Ref | Expression |
|---|---|
| sylnbir.1 | ⊢ (𝜓 ↔ 𝜑) |
| sylnbir.2 | ⊢ (¬ 𝜓 → 𝜒) |
| Ref | Expression |
|---|---|
| sylnbir | ⊢ (¬ 𝜑 → 𝜒) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sylnbir.1 | . . 3 ⊢ (𝜓 ↔ 𝜑) | |
| 2 | 1 | bicomi 224 | . 2 ⊢ (𝜑 ↔ 𝜓) |
| 3 | sylnbir.2 | . 2 ⊢ (¬ 𝜓 → 𝜒) | |
| 4 | 2, 3 | sylnbi 330 | 1 ⊢ (¬ 𝜑 → 𝜒) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 |
| This theorem is referenced by: naecoms 2427 fvmptex 6964 f0cli 7052 1st2val 7975 2nd2val 7976 mpoxopxprcov0 8173 rankvaln 9728 alephcard 9999 alephnbtwn 10000 cfub 10178 cardcf 10181 cflecard 10182 cfle 10183 cflim2 10192 cfidm 10204 itunitc1 10349 ituniiun 10351 domtriom 10372 alephreg 10511 pwcfsdom 10512 cfpwsdom 10513 adderpq 10885 mulerpq 10886 sumz 15664 sumss 15666 prod1 15886 prodss 15889 newval 27739 leftval 27747 rightval 27748 lltropt 27760 madess 27764 oldssmade 27765 lrold 27784 fpwfvss 43374 grur1cld 44194 afvres 47146 afvco2 47150 ndmaovcl 47177 initopropdlemlem 49201 initopropd 49205 termopropd 49206 zeroopropd 49207 |
| Copyright terms: Public domain | W3C validator |