MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sylnbir Structured version   Visualization version   GIF version

Theorem sylnbir 323
Description: A mixed syllogism inference from a biconditional and an implication. (Contributed by Wolf Lammen, 16-Dec-2013.)
Hypotheses
Ref Expression
sylnbir.1 (𝜓𝜑)
sylnbir.2 𝜓𝜒)
Assertion
Ref Expression
sylnbir 𝜑𝜒)

Proof of Theorem sylnbir
StepHypRef Expression
1 sylnbir.1 . . 3 (𝜓𝜑)
21bicomi 216 . 2 (𝜑𝜓)
3 sylnbir.2 . 2 𝜓𝜒)
42, 3sylnbi 322 1 𝜑𝜒)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 198
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 199
This theorem is referenced by:  naecoms  2395  fvmptex  6557  f0cli  6636  1st2val  7475  2nd2val  7476  mpt2xopxprcov0  7627  rankvaln  8961  alephcard  9228  alephnbtwn  9229  cfub  9408  cardcf  9411  cflecard  9412  cfle  9413  cflim2  9422  cfidm  9434  itunitc1  9579  ituniiun  9581  domtriom  9602  alephreg  9741  pwcfsdom  9742  cfpwsdom  9743  adderpq  10115  mulerpq  10116  sumz  14864  sumss  14866  prod1  15081  prodss  15084  eleenn  26249  afvres  42223  afvco2  42227  ndmaovcl  42254
  Copyright terms: Public domain W3C validator