MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sylnbir Structured version   Visualization version   GIF version

Theorem sylnbir 331
Description: A mixed syllogism inference from a biconditional and an implication. (Contributed by Wolf Lammen, 16-Dec-2013.)
Hypotheses
Ref Expression
sylnbir.1 (𝜓𝜑)
sylnbir.2 𝜓𝜒)
Assertion
Ref Expression
sylnbir 𝜑𝜒)

Proof of Theorem sylnbir
StepHypRef Expression
1 sylnbir.1 . . 3 (𝜓𝜑)
21bicomi 224 . 2 (𝜑𝜓)
3 sylnbir.2 . 2 𝜓𝜒)
42, 3sylnbi 330 1 𝜑𝜒)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207
This theorem is referenced by:  naecoms  2437  fvmptex  7043  f0cli  7132  1st2val  8058  2nd2val  8059  mpoxopxprcov0  8258  rankvaln  9868  alephcard  10139  alephnbtwn  10140  cfub  10318  cardcf  10321  cflecard  10322  cfle  10323  cflim2  10332  cfidm  10344  itunitc1  10489  ituniiun  10491  domtriom  10512  alephreg  10651  pwcfsdom  10652  cfpwsdom  10653  adderpq  11025  mulerpq  11026  sumz  15770  sumss  15772  prod1  15992  prodss  15995  newval  27912  leftval  27920  rightval  27921  lltropt  27929  madess  27933  oldssmade  27934  lrold  27953  fpwfvss  43374  grur1cld  44201  afvres  47087  afvco2  47091  ndmaovcl  47118
  Copyright terms: Public domain W3C validator