![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > sylnbir | Structured version Visualization version GIF version |
Description: A mixed syllogism inference from a biconditional and an implication. (Contributed by Wolf Lammen, 16-Dec-2013.) |
Ref | Expression |
---|---|
sylnbir.1 | ⊢ (𝜓 ↔ 𝜑) |
sylnbir.2 | ⊢ (¬ 𝜓 → 𝜒) |
Ref | Expression |
---|---|
sylnbir | ⊢ (¬ 𝜑 → 𝜒) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sylnbir.1 | . . 3 ⊢ (𝜓 ↔ 𝜑) | |
2 | 1 | bicomi 224 | . 2 ⊢ (𝜑 ↔ 𝜓) |
3 | sylnbir.2 | . 2 ⊢ (¬ 𝜓 → 𝜒) | |
4 | 2, 3 | sylnbi 330 | 1 ⊢ (¬ 𝜑 → 𝜒) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 |
This theorem is referenced by: naecoms 2432 fvmptex 7030 f0cli 7118 1st2val 8041 2nd2val 8042 mpoxopxprcov0 8241 rankvaln 9837 alephcard 10108 alephnbtwn 10109 cfub 10287 cardcf 10290 cflecard 10291 cfle 10292 cflim2 10301 cfidm 10313 itunitc1 10458 ituniiun 10460 domtriom 10481 alephreg 10620 pwcfsdom 10621 cfpwsdom 10622 adderpq 10994 mulerpq 10995 sumz 15755 sumss 15757 prod1 15977 prodss 15980 newval 27909 leftval 27917 rightval 27918 lltropt 27926 madess 27930 oldssmade 27931 lrold 27950 fpwfvss 43402 grur1cld 44228 afvres 47122 afvco2 47126 ndmaovcl 47153 |
Copyright terms: Public domain | W3C validator |