| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sylnbir | Structured version Visualization version GIF version | ||
| Description: A mixed syllogism inference from a biconditional and an implication. (Contributed by Wolf Lammen, 16-Dec-2013.) |
| Ref | Expression |
|---|---|
| sylnbir.1 | ⊢ (𝜓 ↔ 𝜑) |
| sylnbir.2 | ⊢ (¬ 𝜓 → 𝜒) |
| Ref | Expression |
|---|---|
| sylnbir | ⊢ (¬ 𝜑 → 𝜒) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sylnbir.1 | . . 3 ⊢ (𝜓 ↔ 𝜑) | |
| 2 | 1 | bicomi 224 | . 2 ⊢ (𝜑 ↔ 𝜓) |
| 3 | sylnbir.2 | . 2 ⊢ (¬ 𝜓 → 𝜒) | |
| 4 | 2, 3 | sylnbi 330 | 1 ⊢ (¬ 𝜑 → 𝜒) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 |
| This theorem is referenced by: naecoms 2427 fvmptex 6982 f0cli 7070 1st2val 7996 2nd2val 7997 mpoxopxprcov0 8196 rankvaln 9752 alephcard 10023 alephnbtwn 10024 cfub 10202 cardcf 10205 cflecard 10206 cfle 10207 cflim2 10216 cfidm 10228 itunitc1 10373 ituniiun 10375 domtriom 10396 alephreg 10535 pwcfsdom 10536 cfpwsdom 10537 adderpq 10909 mulerpq 10910 sumz 15688 sumss 15690 prod1 15910 prodss 15913 newval 27763 leftval 27771 rightval 27772 lltropt 27784 madess 27788 oldssmade 27789 lrold 27808 fpwfvss 43401 grur1cld 44221 afvres 47173 afvco2 47177 ndmaovcl 47204 initopropdlemlem 49228 initopropd 49232 termopropd 49233 zeroopropd 49234 |
| Copyright terms: Public domain | W3C validator |