![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > sylnbir | Structured version Visualization version GIF version |
Description: A mixed syllogism inference from a biconditional and an implication. (Contributed by Wolf Lammen, 16-Dec-2013.) |
Ref | Expression |
---|---|
sylnbir.1 | ⊢ (𝜓 ↔ 𝜑) |
sylnbir.2 | ⊢ (¬ 𝜓 → 𝜒) |
Ref | Expression |
---|---|
sylnbir | ⊢ (¬ 𝜑 → 𝜒) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sylnbir.1 | . . 3 ⊢ (𝜓 ↔ 𝜑) | |
2 | 1 | bicomi 224 | . 2 ⊢ (𝜑 ↔ 𝜓) |
3 | sylnbir.2 | . 2 ⊢ (¬ 𝜓 → 𝜒) | |
4 | 2, 3 | sylnbi 330 | 1 ⊢ (¬ 𝜑 → 𝜒) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 |
This theorem is referenced by: naecoms 2437 fvmptex 7043 f0cli 7132 1st2val 8058 2nd2val 8059 mpoxopxprcov0 8258 rankvaln 9868 alephcard 10139 alephnbtwn 10140 cfub 10318 cardcf 10321 cflecard 10322 cfle 10323 cflim2 10332 cfidm 10344 itunitc1 10489 ituniiun 10491 domtriom 10512 alephreg 10651 pwcfsdom 10652 cfpwsdom 10653 adderpq 11025 mulerpq 11026 sumz 15770 sumss 15772 prod1 15992 prodss 15995 newval 27912 leftval 27920 rightval 27921 lltropt 27929 madess 27933 oldssmade 27934 lrold 27953 fpwfvss 43374 grur1cld 44201 afvres 47087 afvco2 47091 ndmaovcl 47118 |
Copyright terms: Public domain | W3C validator |