| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sylnbir | Structured version Visualization version GIF version | ||
| Description: A mixed syllogism inference from a biconditional and an implication. (Contributed by Wolf Lammen, 16-Dec-2013.) |
| Ref | Expression |
|---|---|
| sylnbir.1 | ⊢ (𝜓 ↔ 𝜑) |
| sylnbir.2 | ⊢ (¬ 𝜓 → 𝜒) |
| Ref | Expression |
|---|---|
| sylnbir | ⊢ (¬ 𝜑 → 𝜒) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sylnbir.1 | . . 3 ⊢ (𝜓 ↔ 𝜑) | |
| 2 | 1 | bicomi 224 | . 2 ⊢ (𝜑 ↔ 𝜓) |
| 3 | sylnbir.2 | . 2 ⊢ (¬ 𝜓 → 𝜒) | |
| 4 | 2, 3 | sylnbi 330 | 1 ⊢ (¬ 𝜑 → 𝜒) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 |
| This theorem is referenced by: naecoms 2427 fvmptex 6944 f0cli 7032 1st2val 7952 2nd2val 7953 mpoxopxprcov0 8150 rankvaln 9695 alephcard 9964 alephnbtwn 9965 cfub 10143 cardcf 10146 cflecard 10147 cfle 10148 cflim2 10157 cfidm 10169 itunitc1 10314 ituniiun 10316 domtriom 10337 alephreg 10476 pwcfsdom 10477 cfpwsdom 10478 adderpq 10850 mulerpq 10851 sumz 15629 sumss 15631 prod1 15851 prodss 15854 newval 27765 leftval 27773 rightval 27774 lltropt 27786 madess 27790 oldssmade 27791 oldss 27792 lrold 27811 fpwfvss 43385 grur1cld 44205 afvres 47156 afvco2 47160 ndmaovcl 47187 initopropdlemlem 49224 initopropd 49228 termopropd 49229 zeroopropd 49230 |
| Copyright terms: Public domain | W3C validator |