| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sylnbir | Structured version Visualization version GIF version | ||
| Description: A mixed syllogism inference from a biconditional and an implication. (Contributed by Wolf Lammen, 16-Dec-2013.) |
| Ref | Expression |
|---|---|
| sylnbir.1 | ⊢ (𝜓 ↔ 𝜑) |
| sylnbir.2 | ⊢ (¬ 𝜓 → 𝜒) |
| Ref | Expression |
|---|---|
| sylnbir | ⊢ (¬ 𝜑 → 𝜒) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sylnbir.1 | . . 3 ⊢ (𝜓 ↔ 𝜑) | |
| 2 | 1 | bicomi 224 | . 2 ⊢ (𝜑 ↔ 𝜓) |
| 3 | sylnbir.2 | . 2 ⊢ (¬ 𝜓 → 𝜒) | |
| 4 | 2, 3 | sylnbi 330 | 1 ⊢ (¬ 𝜑 → 𝜒) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 |
| This theorem is referenced by: naecoms 2429 tz6.12-2 6809 fvmptex 6943 f0cli 7031 1st2val 7949 2nd2val 7950 mpoxopxprcov0 8147 rankvaln 9692 alephcard 9961 alephnbtwn 9962 cfub 10140 cardcf 10143 cflecard 10144 cfle 10145 cflim2 10154 cfidm 10166 itunitc1 10311 ituniiun 10313 domtriom 10334 alephreg 10473 pwcfsdom 10474 cfpwsdom 10475 adderpq 10847 mulerpq 10848 sumz 15629 sumss 15631 prod1 15851 prodss 15854 newval 27796 leftval 27804 rightval 27805 lltropt 27817 madess 27821 oldssmade 27822 oldss 27823 lrold 27842 r1wf 35107 fpwfvss 43453 grur1cld 44273 afvres 47211 afvco2 47215 ndmaovcl 47242 initopropdlemlem 49279 initopropd 49283 termopropd 49284 zeroopropd 49285 |
| Copyright terms: Public domain | W3C validator |