MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sylnbir Structured version   Visualization version   GIF version

Theorem sylnbir 331
Description: A mixed syllogism inference from a biconditional and an implication. (Contributed by Wolf Lammen, 16-Dec-2013.)
Hypotheses
Ref Expression
sylnbir.1 (𝜓𝜑)
sylnbir.2 𝜓𝜒)
Assertion
Ref Expression
sylnbir 𝜑𝜒)

Proof of Theorem sylnbir
StepHypRef Expression
1 sylnbir.1 . . 3 (𝜓𝜑)
21bicomi 223 . 2 (𝜑𝜓)
3 sylnbir.2 . 2 𝜓𝜒)
42, 3sylnbi 330 1 𝜑𝜒)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206
This theorem is referenced by:  naecoms  2429  fvmptex  6889  f0cli  6974  1st2val  7859  2nd2val  7860  mpoxopxprcov0  8033  rankvaln  9557  alephcard  9826  alephnbtwn  9827  cfub  10005  cardcf  10008  cflecard  10009  cfle  10010  cflim2  10019  cfidm  10031  itunitc1  10176  ituniiun  10178  domtriom  10199  alephreg  10338  pwcfsdom  10339  cfpwsdom  10340  adderpq  10712  mulerpq  10713  sumz  15434  sumss  15436  prod1  15654  prodss  15657  newval  34039  leftval  34047  rightval  34048  madess  34059  oldssmade  34060  lrold  34077  sn-00id  40384  grur1cld  41850  afvres  44664  afvco2  44668  ndmaovcl  44695
  Copyright terms: Public domain W3C validator