Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > sylnbir | Structured version Visualization version GIF version |
Description: A mixed syllogism inference from a biconditional and an implication. (Contributed by Wolf Lammen, 16-Dec-2013.) |
Ref | Expression |
---|---|
sylnbir.1 | ⊢ (𝜓 ↔ 𝜑) |
sylnbir.2 | ⊢ (¬ 𝜓 → 𝜒) |
Ref | Expression |
---|---|
sylnbir | ⊢ (¬ 𝜑 → 𝜒) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sylnbir.1 | . . 3 ⊢ (𝜓 ↔ 𝜑) | |
2 | 1 | bicomi 223 | . 2 ⊢ (𝜑 ↔ 𝜓) |
3 | sylnbir.2 | . 2 ⊢ (¬ 𝜓 → 𝜒) | |
4 | 2, 3 | sylnbi 329 | 1 ⊢ (¬ 𝜑 → 𝜒) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 |
This theorem is referenced by: naecoms 2429 fvmptex 6871 f0cli 6956 1st2val 7832 2nd2val 7833 mpoxopxprcov0 8004 rankvaln 9488 alephcard 9757 alephnbtwn 9758 cfub 9936 cardcf 9939 cflecard 9940 cfle 9941 cflim2 9950 cfidm 9962 itunitc1 10107 ituniiun 10109 domtriom 10130 alephreg 10269 pwcfsdom 10270 cfpwsdom 10271 adderpq 10643 mulerpq 10644 sumz 15362 sumss 15364 prod1 15582 prodss 15585 newval 33966 leftval 33974 rightval 33975 madess 33986 oldssmade 33987 lrold 34004 sn-00id 40305 grur1cld 41739 afvres 44551 afvco2 44555 ndmaovcl 44582 |
Copyright terms: Public domain | W3C validator |