![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > sylnbir | Structured version Visualization version GIF version |
Description: A mixed syllogism inference from a biconditional and an implication. (Contributed by Wolf Lammen, 16-Dec-2013.) |
Ref | Expression |
---|---|
sylnbir.1 | ⊢ (𝜓 ↔ 𝜑) |
sylnbir.2 | ⊢ (¬ 𝜓 → 𝜒) |
Ref | Expression |
---|---|
sylnbir | ⊢ (¬ 𝜑 → 𝜒) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sylnbir.1 | . . 3 ⊢ (𝜓 ↔ 𝜑) | |
2 | 1 | bicomi 216 | . 2 ⊢ (𝜑 ↔ 𝜓) |
3 | sylnbir.2 | . 2 ⊢ (¬ 𝜓 → 𝜒) | |
4 | 2, 3 | sylnbi 322 | 1 ⊢ (¬ 𝜑 → 𝜒) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 198 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 199 |
This theorem is referenced by: naecoms 2395 fvmptex 6557 f0cli 6636 1st2val 7475 2nd2val 7476 mpt2xopxprcov0 7627 rankvaln 8961 alephcard 9228 alephnbtwn 9229 cfub 9408 cardcf 9411 cflecard 9412 cfle 9413 cflim2 9422 cfidm 9434 itunitc1 9579 ituniiun 9581 domtriom 9602 alephreg 9741 pwcfsdom 9742 cfpwsdom 9743 adderpq 10115 mulerpq 10116 sumz 14864 sumss 14866 prod1 15081 prodss 15084 eleenn 26249 afvres 42223 afvco2 42227 ndmaovcl 42254 |
Copyright terms: Public domain | W3C validator |