| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sylnbir | Structured version Visualization version GIF version | ||
| Description: A mixed syllogism inference from a biconditional and an implication. (Contributed by Wolf Lammen, 16-Dec-2013.) |
| Ref | Expression |
|---|---|
| sylnbir.1 | ⊢ (𝜓 ↔ 𝜑) |
| sylnbir.2 | ⊢ (¬ 𝜓 → 𝜒) |
| Ref | Expression |
|---|---|
| sylnbir | ⊢ (¬ 𝜑 → 𝜒) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sylnbir.1 | . . 3 ⊢ (𝜓 ↔ 𝜑) | |
| 2 | 1 | bicomi 224 | . 2 ⊢ (𝜑 ↔ 𝜓) |
| 3 | sylnbir.2 | . 2 ⊢ (¬ 𝜓 → 𝜒) | |
| 4 | 2, 3 | sylnbi 330 | 1 ⊢ (¬ 𝜑 → 𝜒) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 |
| This theorem is referenced by: naecoms 2428 fvmptex 6985 f0cli 7073 1st2val 7999 2nd2val 8000 mpoxopxprcov0 8199 rankvaln 9759 alephcard 10030 alephnbtwn 10031 cfub 10209 cardcf 10212 cflecard 10213 cfle 10214 cflim2 10223 cfidm 10235 itunitc1 10380 ituniiun 10382 domtriom 10403 alephreg 10542 pwcfsdom 10543 cfpwsdom 10544 adderpq 10916 mulerpq 10917 sumz 15695 sumss 15697 prod1 15917 prodss 15920 newval 27770 leftval 27778 rightval 27779 lltropt 27791 madess 27795 oldssmade 27796 lrold 27815 fpwfvss 43408 grur1cld 44228 afvres 47177 afvco2 47181 ndmaovcl 47208 initopropdlemlem 49232 initopropd 49236 termopropd 49237 zeroopropd 49238 |
| Copyright terms: Public domain | W3C validator |