MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  notabw Structured version   Visualization version   GIF version

Theorem notabw 4204
Description: A class abstraction defined by a negation. Version of notab 4205 using implicit substitution, which does not require ax-10 2143, ax-12 2177. (Contributed by Gino Giotto, 15-Oct-2024.)
Hypothesis
Ref Expression
notabw.1 (𝑥 = 𝑦 → (𝜑𝜓))
Assertion
Ref Expression
notabw {𝑥 ∣ ¬ 𝜑} = (V ∖ {𝑦𝜓})
Distinct variable groups:   𝑥,𝑦   𝜑,𝑦   𝜓,𝑥
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑦)

Proof of Theorem notabw
StepHypRef Expression
1 vex 3402 . . . . 5 𝑥 ∈ V
21biantrur 534 . . . 4 𝑥 ∈ {𝑦𝜓} ↔ (𝑥 ∈ V ∧ ¬ 𝑥 ∈ {𝑦𝜓}))
3 df-clab 2715 . . . . 5 (𝑥 ∈ {𝑦𝜓} ↔ [𝑥 / 𝑦]𝜓)
4 notabw.1 . . . . . . . 8 (𝑥 = 𝑦 → (𝜑𝜓))
54bicomd 226 . . . . . . 7 (𝑥 = 𝑦 → (𝜓𝜑))
65equcoms 2030 . . . . . 6 (𝑦 = 𝑥 → (𝜓𝜑))
76sbievw 2101 . . . . 5 ([𝑥 / 𝑦]𝜓𝜑)
83, 7bitri 278 . . . 4 (𝑥 ∈ {𝑦𝜓} ↔ 𝜑)
92, 8xchnxbi 335 . . 3 𝜑 ↔ (𝑥 ∈ V ∧ ¬ 𝑥 ∈ {𝑦𝜓}))
109abbii 2801 . 2 {𝑥 ∣ ¬ 𝜑} = {𝑥 ∣ (𝑥 ∈ V ∧ ¬ 𝑥 ∈ {𝑦𝜓})}
11 df-dif 3856 . 2 (V ∖ {𝑦𝜓}) = {𝑥 ∣ (𝑥 ∈ V ∧ ¬ 𝑥 ∈ {𝑦𝜓})}
1210, 11eqtr4i 2762 1 {𝑥 ∣ ¬ 𝜑} = (V ∖ {𝑦𝜓})
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399   = wceq 1543  [wsb 2072  wcel 2112  {cab 2714  Vcvv 3398  cdif 3850
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2018  ax-8 2114  ax-9 2122  ax-ext 2708
This theorem depends on definitions:  df-bi 210  df-an 400  df-tru 1546  df-ex 1788  df-sb 2073  df-clab 2715  df-cleq 2728  df-clel 2809  df-v 3400  df-dif 3856
This theorem is referenced by:  dfif3  4439
  Copyright terms: Public domain W3C validator