Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > notabw | Structured version Visualization version GIF version |
Description: A class abstraction defined by a negation. Version of notab 4238 using implicit substitution, which does not require ax-10 2137, ax-12 2171. (Contributed by Gino Giotto, 15-Oct-2024.) |
Ref | Expression |
---|---|
notabw.1 | ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
notabw | ⊢ {𝑥 ∣ ¬ 𝜑} = (V ∖ {𝑦 ∣ 𝜓}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vex 3436 | . . . . 5 ⊢ 𝑥 ∈ V | |
2 | 1 | biantrur 531 | . . . 4 ⊢ (¬ 𝑥 ∈ {𝑦 ∣ 𝜓} ↔ (𝑥 ∈ V ∧ ¬ 𝑥 ∈ {𝑦 ∣ 𝜓})) |
3 | df-clab 2716 | . . . . 5 ⊢ (𝑥 ∈ {𝑦 ∣ 𝜓} ↔ [𝑥 / 𝑦]𝜓) | |
4 | notabw.1 | . . . . . . . 8 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) | |
5 | 4 | bicomd 222 | . . . . . . 7 ⊢ (𝑥 = 𝑦 → (𝜓 ↔ 𝜑)) |
6 | 5 | equcoms 2023 | . . . . . 6 ⊢ (𝑦 = 𝑥 → (𝜓 ↔ 𝜑)) |
7 | 6 | sbievw 2095 | . . . . 5 ⊢ ([𝑥 / 𝑦]𝜓 ↔ 𝜑) |
8 | 3, 7 | bitri 274 | . . . 4 ⊢ (𝑥 ∈ {𝑦 ∣ 𝜓} ↔ 𝜑) |
9 | 2, 8 | xchnxbi 332 | . . 3 ⊢ (¬ 𝜑 ↔ (𝑥 ∈ V ∧ ¬ 𝑥 ∈ {𝑦 ∣ 𝜓})) |
10 | 9 | abbii 2808 | . 2 ⊢ {𝑥 ∣ ¬ 𝜑} = {𝑥 ∣ (𝑥 ∈ V ∧ ¬ 𝑥 ∈ {𝑦 ∣ 𝜓})} |
11 | df-dif 3890 | . 2 ⊢ (V ∖ {𝑦 ∣ 𝜓}) = {𝑥 ∣ (𝑥 ∈ V ∧ ¬ 𝑥 ∈ {𝑦 ∣ 𝜓})} | |
12 | 10, 11 | eqtr4i 2769 | 1 ⊢ {𝑥 ∣ ¬ 𝜑} = (V ∖ {𝑦 ∣ 𝜓}) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1539 [wsb 2067 ∈ wcel 2106 {cab 2715 Vcvv 3432 ∖ cdif 3884 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1542 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-v 3434 df-dif 3890 |
This theorem is referenced by: dfif3 4473 |
Copyright terms: Public domain | W3C validator |