MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  notabw Structured version   Visualization version   GIF version

Theorem notabw 4237
Description: A class abstraction defined by a negation. Version of notab 4238 using implicit substitution, which does not require ax-10 2137, ax-12 2171. (Contributed by Gino Giotto, 15-Oct-2024.)
Hypothesis
Ref Expression
notabw.1 (𝑥 = 𝑦 → (𝜑𝜓))
Assertion
Ref Expression
notabw {𝑥 ∣ ¬ 𝜑} = (V ∖ {𝑦𝜓})
Distinct variable groups:   𝑥,𝑦   𝜑,𝑦   𝜓,𝑥
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑦)

Proof of Theorem notabw
StepHypRef Expression
1 vex 3436 . . . . 5 𝑥 ∈ V
21biantrur 531 . . . 4 𝑥 ∈ {𝑦𝜓} ↔ (𝑥 ∈ V ∧ ¬ 𝑥 ∈ {𝑦𝜓}))
3 df-clab 2716 . . . . 5 (𝑥 ∈ {𝑦𝜓} ↔ [𝑥 / 𝑦]𝜓)
4 notabw.1 . . . . . . . 8 (𝑥 = 𝑦 → (𝜑𝜓))
54bicomd 222 . . . . . . 7 (𝑥 = 𝑦 → (𝜓𝜑))
65equcoms 2023 . . . . . 6 (𝑦 = 𝑥 → (𝜓𝜑))
76sbievw 2095 . . . . 5 ([𝑥 / 𝑦]𝜓𝜑)
83, 7bitri 274 . . . 4 (𝑥 ∈ {𝑦𝜓} ↔ 𝜑)
92, 8xchnxbi 332 . . 3 𝜑 ↔ (𝑥 ∈ V ∧ ¬ 𝑥 ∈ {𝑦𝜓}))
109abbii 2808 . 2 {𝑥 ∣ ¬ 𝜑} = {𝑥 ∣ (𝑥 ∈ V ∧ ¬ 𝑥 ∈ {𝑦𝜓})}
11 df-dif 3890 . 2 (V ∖ {𝑦𝜓}) = {𝑥 ∣ (𝑥 ∈ V ∧ ¬ 𝑥 ∈ {𝑦𝜓})}
1210, 11eqtr4i 2769 1 {𝑥 ∣ ¬ 𝜑} = (V ∖ {𝑦𝜓})
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396   = wceq 1539  [wsb 2067  wcel 2106  {cab 2715  Vcvv 3432  cdif 3884
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 397  df-tru 1542  df-ex 1783  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-v 3434  df-dif 3890
This theorem is referenced by:  dfif3  4473
  Copyright terms: Public domain W3C validator