| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > notabw | Structured version Visualization version GIF version | ||
| Description: A class abstraction defined by a negation. Version of notab 4294 using implicit substitution, which does not require ax-10 2142, ax-12 2178. (Contributed by GG, 15-Oct-2024.) |
| Ref | Expression |
|---|---|
| notabw.1 | ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) |
| Ref | Expression |
|---|---|
| notabw | ⊢ {𝑥 ∣ ¬ 𝜑} = (V ∖ {𝑦 ∣ 𝜓}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vex 3468 | . . . . 5 ⊢ 𝑥 ∈ V | |
| 2 | 1 | biantrur 530 | . . . 4 ⊢ (¬ 𝑥 ∈ {𝑦 ∣ 𝜓} ↔ (𝑥 ∈ V ∧ ¬ 𝑥 ∈ {𝑦 ∣ 𝜓})) |
| 3 | df-clab 2715 | . . . . 5 ⊢ (𝑥 ∈ {𝑦 ∣ 𝜓} ↔ [𝑥 / 𝑦]𝜓) | |
| 4 | notabw.1 | . . . . . . . 8 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) | |
| 5 | 4 | bicomd 223 | . . . . . . 7 ⊢ (𝑥 = 𝑦 → (𝜓 ↔ 𝜑)) |
| 6 | 5 | equcoms 2020 | . . . . . 6 ⊢ (𝑦 = 𝑥 → (𝜓 ↔ 𝜑)) |
| 7 | 6 | sbievw 2094 | . . . . 5 ⊢ ([𝑥 / 𝑦]𝜓 ↔ 𝜑) |
| 8 | 3, 7 | bitri 275 | . . . 4 ⊢ (𝑥 ∈ {𝑦 ∣ 𝜓} ↔ 𝜑) |
| 9 | 2, 8 | xchnxbi 332 | . . 3 ⊢ (¬ 𝜑 ↔ (𝑥 ∈ V ∧ ¬ 𝑥 ∈ {𝑦 ∣ 𝜓})) |
| 10 | 9 | abbii 2803 | . 2 ⊢ {𝑥 ∣ ¬ 𝜑} = {𝑥 ∣ (𝑥 ∈ V ∧ ¬ 𝑥 ∈ {𝑦 ∣ 𝜓})} |
| 11 | df-dif 3934 | . 2 ⊢ (V ∖ {𝑦 ∣ 𝜓}) = {𝑥 ∣ (𝑥 ∈ V ∧ ¬ 𝑥 ∈ {𝑦 ∣ 𝜓})} | |
| 12 | 10, 11 | eqtr4i 2762 | 1 ⊢ {𝑥 ∣ ¬ 𝜑} = (V ∖ {𝑦 ∣ 𝜓}) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 [wsb 2065 ∈ wcel 2109 {cab 2714 Vcvv 3464 ∖ cdif 3928 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2708 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-v 3466 df-dif 3934 |
| This theorem is referenced by: dfif3 4520 |
| Copyright terms: Public domain | W3C validator |