Users' Mathboxes Mathbox for Stefan Allan < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  xfree2 Structured version   Visualization version   GIF version

Theorem xfree2 30708
Description: A partial converse to 19.9t 2200. (Contributed by Stefan Allan, 21-Dec-2008.)
Assertion
Ref Expression
xfree2 (∀𝑥(𝜑 → ∀𝑥𝜑) ↔ ∀𝑥𝜑 → ∀𝑥 ¬ 𝜑))

Proof of Theorem xfree2
StepHypRef Expression
1 xfree 30707 . 2 (∀𝑥(𝜑 → ∀𝑥𝜑) ↔ ∀𝑥(∃𝑥𝜑𝜑))
2 eximal 1786 . . 3 ((∃𝑥𝜑𝜑) ↔ (¬ 𝜑 → ∀𝑥 ¬ 𝜑))
32albii 1823 . 2 (∀𝑥(∃𝑥𝜑𝜑) ↔ ∀𝑥𝜑 → ∀𝑥 ¬ 𝜑))
41, 3bitri 274 1 (∀𝑥(𝜑 → ∀𝑥𝜑) ↔ ∀𝑥𝜑 → ∀𝑥 ¬ 𝜑))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wal 1537  wex 1783
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-10 2139  ax-12 2173
This theorem depends on definitions:  df-bi 206  df-or 844  df-ex 1784  df-nf 1788
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator