Users' Mathboxes Mathbox for Stefan Allan < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  xfree2 Structured version   Visualization version   GIF version

Theorem xfree2 32477
Description: A partial converse to 19.9t 2205. (Contributed by Stefan Allan, 21-Dec-2008.)
Assertion
Ref Expression
xfree2 (∀𝑥(𝜑 → ∀𝑥𝜑) ↔ ∀𝑥𝜑 → ∀𝑥 ¬ 𝜑))

Proof of Theorem xfree2
StepHypRef Expression
1 xfree 32476 . 2 (∀𝑥(𝜑 → ∀𝑥𝜑) ↔ ∀𝑥(∃𝑥𝜑𝜑))
2 eximal 1780 . . 3 ((∃𝑥𝜑𝜑) ↔ (¬ 𝜑 → ∀𝑥 ¬ 𝜑))
32albii 1817 . 2 (∀𝑥(∃𝑥𝜑𝜑) ↔ ∀𝑥𝜑 → ∀𝑥 ¬ 𝜑))
41, 3bitri 275 1 (∀𝑥(𝜑 → ∀𝑥𝜑) ↔ ∀𝑥𝜑 → ∀𝑥 ¬ 𝜑))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wal 1535  wex 1777
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-10 2141  ax-12 2178
This theorem depends on definitions:  df-bi 207  df-or 847  df-ex 1778  df-nf 1782
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator