MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  19.9t Structured version   Visualization version   GIF version

Theorem 19.9t 2207
Description: Closed form of 19.9 2208 and version of 19.3t 2204 with an existential quantifier. (Contributed by NM, 13-May-1993.) (Revised by Mario Carneiro, 24-Sep-2016.) (Proof shortened by Wolf Lammen, 14-Jul-2020.)
Assertion
Ref Expression
19.9t (Ⅎ𝑥𝜑 → (∃𝑥𝜑𝜑))

Proof of Theorem 19.9t
StepHypRef Expression
1 id 22 . . 3 (Ⅎ𝑥𝜑 → Ⅎ𝑥𝜑)
2119.9d 2206 . 2 (Ⅎ𝑥𝜑 → (∃𝑥𝜑𝜑))
3 19.8a 2184 . 2 (𝜑 → ∃𝑥𝜑)
42, 3impbid1 225 1 (Ⅎ𝑥𝜑 → (∃𝑥𝜑𝜑))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wex 1780  wnf 1784
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-12 2180
This theorem depends on definitions:  df-bi 207  df-ex 1781  df-nf 1785
This theorem is referenced by:  19.9  2208  19.21t  2209  sbft  2272  bj-cbv3tb  36831  bj-spimtv  36838  bj-equsal1t  36866  bj-19.21t0  36874  19.9dev  42317
  Copyright terms: Public domain W3C validator