Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 19.9t | Structured version Visualization version GIF version |
Description: Closed form of 19.9 2201 and version of 19.3t 2197 with an existential quantifier. (Contributed by NM, 13-May-1993.) (Revised by Mario Carneiro, 24-Sep-2016.) (Proof shortened by Wolf Lammen, 14-Jul-2020.) |
Ref | Expression |
---|---|
19.9t | ⊢ (Ⅎ𝑥𝜑 → (∃𝑥𝜑 ↔ 𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 22 | . . 3 ⊢ (Ⅎ𝑥𝜑 → Ⅎ𝑥𝜑) | |
2 | 1 | 19.9d 2199 | . 2 ⊢ (Ⅎ𝑥𝜑 → (∃𝑥𝜑 → 𝜑)) |
3 | 19.8a 2176 | . 2 ⊢ (𝜑 → ∃𝑥𝜑) | |
4 | 2, 3 | impbid1 224 | 1 ⊢ (Ⅎ𝑥𝜑 → (∃𝑥𝜑 ↔ 𝜑)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∃wex 1783 Ⅎwnf 1787 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-12 2173 |
This theorem depends on definitions: df-bi 206 df-ex 1784 df-nf 1788 |
This theorem is referenced by: 19.9 2201 19.21t 2202 sbft 2265 vtoclegft 3512 bj-cbv3tb 34896 bj-spimtv 34903 bj-equsal1t 34932 bj-19.21t0 34940 19.9dev 40106 |
Copyright terms: Public domain | W3C validator |