Mathbox for Stefan Allan |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > xfree | Structured version Visualization version GIF version |
Description: A partial converse to 19.9t 2206. (Contributed by Stefan Allan, 21-Dec-2008.) (Revised by Mario Carneiro, 11-Dec-2016.) |
Ref | Expression |
---|---|
xfree | ⊢ (∀𝑥(𝜑 → ∀𝑥𝜑) ↔ ∀𝑥(∃𝑥𝜑 → 𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nf5 2287 | . 2 ⊢ (Ⅎ𝑥𝜑 ↔ ∀𝑥(𝜑 → ∀𝑥𝜑)) | |
2 | nf6 2288 | . 2 ⊢ (Ⅎ𝑥𝜑 ↔ ∀𝑥(∃𝑥𝜑 → 𝜑)) | |
3 | 1, 2 | bitr3i 280 | 1 ⊢ (∀𝑥(𝜑 → ∀𝑥𝜑) ↔ ∀𝑥(∃𝑥𝜑 → 𝜑)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 209 ∀wal 1540 ∃wex 1786 Ⅎwnf 1790 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2020 ax-10 2145 ax-12 2179 |
This theorem depends on definitions: df-bi 210 df-or 847 df-ex 1787 df-nf 1791 |
This theorem is referenced by: xfree2 30392 |
Copyright terms: Public domain | W3C validator |