Mathbox for Stefan Allan |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > xfree | Structured version Visualization version GIF version |
Description: A partial converse to 19.9t 2200. (Contributed by Stefan Allan, 21-Dec-2008.) (Revised by Mario Carneiro, 11-Dec-2016.) |
Ref | Expression |
---|---|
xfree | ⊢ (∀𝑥(𝜑 → ∀𝑥𝜑) ↔ ∀𝑥(∃𝑥𝜑 → 𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nf5 2282 | . 2 ⊢ (Ⅎ𝑥𝜑 ↔ ∀𝑥(𝜑 → ∀𝑥𝜑)) | |
2 | nf6 2283 | . 2 ⊢ (Ⅎ𝑥𝜑 ↔ ∀𝑥(∃𝑥𝜑 → 𝜑)) | |
3 | 1, 2 | bitr3i 276 | 1 ⊢ (∀𝑥(𝜑 → ∀𝑥𝜑) ↔ ∀𝑥(∃𝑥𝜑 → 𝜑)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∀wal 1539 ∃wex 1785 Ⅎwnf 1789 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-10 2140 ax-12 2174 |
This theorem depends on definitions: df-bi 206 df-or 844 df-ex 1786 df-nf 1790 |
This theorem is referenced by: xfree2 30786 |
Copyright terms: Public domain | W3C validator |