Users' Mathboxes Mathbox for Stefan Allan < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  xfree Structured version   Visualization version   GIF version

Theorem xfree 32267
Description: A partial converse to 19.9t 2193. (Contributed by Stefan Allan, 21-Dec-2008.) (Revised by Mario Carneiro, 11-Dec-2016.)
Assertion
Ref Expression
xfree (∀𝑥(𝜑 → ∀𝑥𝜑) ↔ ∀𝑥(∃𝑥𝜑𝜑))

Proof of Theorem xfree
StepHypRef Expression
1 nf5 2272 . 2 (Ⅎ𝑥𝜑 ↔ ∀𝑥(𝜑 → ∀𝑥𝜑))
2 nf6 2273 . 2 (Ⅎ𝑥𝜑 ↔ ∀𝑥(∃𝑥𝜑𝜑))
31, 2bitr3i 277 1 (∀𝑥(𝜑 → ∀𝑥𝜑) ↔ ∀𝑥(∃𝑥𝜑𝜑))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wal 1532  wex 1774  wnf 1778
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-10 2130  ax-12 2167
This theorem depends on definitions:  df-bi 206  df-or 847  df-ex 1775  df-nf 1779
This theorem is referenced by:  xfree2  32268
  Copyright terms: Public domain W3C validator