Users' Mathboxes Mathbox for Stefan Allan < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  addltmulALT Structured version   Visualization version   GIF version

Theorem addltmulALT 30808
Description: A proof readability experiment for addltmul 12209. (Contributed by Stefan Allan, 30-Oct-2010.) (New usage is discouraged.) (Proof modification is discouraged.)
Assertion
Ref Expression
addltmulALT (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (2 < 𝐴 ∧ 2 < 𝐵)) → (𝐴 + 𝐵) < (𝐴 · 𝐵))

Proof of Theorem addltmulALT
StepHypRef Expression
1 simpr 485 . . . . 5 ((𝐴 ∈ ℝ ∧ 2 < 𝐴) → 2 < 𝐴)
2 2re 12047 . . . . . . . 8 2 ∈ ℝ
32a1i 11 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 2 < 𝐴) → 2 ∈ ℝ)
4 simpl 483 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 2 < 𝐴) → 𝐴 ∈ ℝ)
5 1re 10975 . . . . . . . 8 1 ∈ ℝ
65a1i 11 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 2 < 𝐴) → 1 ∈ ℝ)
7 ltsub1 11471 . . . . . . 7 ((2 ∈ ℝ ∧ 𝐴 ∈ ℝ ∧ 1 ∈ ℝ) → (2 < 𝐴 ↔ (2 − 1) < (𝐴 − 1)))
83, 4, 6, 7syl3anc 1370 . . . . . 6 ((𝐴 ∈ ℝ ∧ 2 < 𝐴) → (2 < 𝐴 ↔ (2 − 1) < (𝐴 − 1)))
9 2cn 12048 . . . . . . . . 9 2 ∈ ℂ
10 ax-1cn 10929 . . . . . . . . 9 1 ∈ ℂ
11 df-2 12036 . . . . . . . . . 10 2 = (1 + 1)
1211eqcomi 2747 . . . . . . . . 9 (1 + 1) = 2
139, 10, 10, 12subaddrii 11310 . . . . . . . 8 (2 − 1) = 1
1413breq1i 5081 . . . . . . 7 ((2 − 1) < (𝐴 − 1) ↔ 1 < (𝐴 − 1))
1514a1i 11 . . . . . 6 ((𝐴 ∈ ℝ ∧ 2 < 𝐴) → ((2 − 1) < (𝐴 − 1) ↔ 1 < (𝐴 − 1)))
168, 15bitrd 278 . . . . 5 ((𝐴 ∈ ℝ ∧ 2 < 𝐴) → (2 < 𝐴 ↔ 1 < (𝐴 − 1)))
171, 16mpbid 231 . . . 4 ((𝐴 ∈ ℝ ∧ 2 < 𝐴) → 1 < (𝐴 − 1))
18 simpr 485 . . . . 5 ((𝐵 ∈ ℝ ∧ 2 < 𝐵) → 2 < 𝐵)
192a1i 11 . . . . . . 7 ((𝐵 ∈ ℝ ∧ 2 < 𝐵) → 2 ∈ ℝ)
20 simpl 483 . . . . . . 7 ((𝐵 ∈ ℝ ∧ 2 < 𝐵) → 𝐵 ∈ ℝ)
215a1i 11 . . . . . . 7 ((𝐵 ∈ ℝ ∧ 2 < 𝐵) → 1 ∈ ℝ)
22 ltsub1 11471 . . . . . . 7 ((2 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 ∈ ℝ) → (2 < 𝐵 ↔ (2 − 1) < (𝐵 − 1)))
2319, 20, 21, 22syl3anc 1370 . . . . . 6 ((𝐵 ∈ ℝ ∧ 2 < 𝐵) → (2 < 𝐵 ↔ (2 − 1) < (𝐵 − 1)))
2413breq1i 5081 . . . . . . 7 ((2 − 1) < (𝐵 − 1) ↔ 1 < (𝐵 − 1))
2524a1i 11 . . . . . 6 ((𝐵 ∈ ℝ ∧ 2 < 𝐵) → ((2 − 1) < (𝐵 − 1) ↔ 1 < (𝐵 − 1)))
2623, 25bitrd 278 . . . . 5 ((𝐵 ∈ ℝ ∧ 2 < 𝐵) → (2 < 𝐵 ↔ 1 < (𝐵 − 1)))
2718, 26mpbid 231 . . . 4 ((𝐵 ∈ ℝ ∧ 2 < 𝐵) → 1 < (𝐵 − 1))
2817, 27anim12i 613 . . 3 (((𝐴 ∈ ℝ ∧ 2 < 𝐴) ∧ (𝐵 ∈ ℝ ∧ 2 < 𝐵)) → (1 < (𝐴 − 1) ∧ 1 < (𝐵 − 1)))
2928an4s 657 . 2 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (2 < 𝐴 ∧ 2 < 𝐵)) → (1 < (𝐴 − 1) ∧ 1 < (𝐵 − 1)))
30 peano2rem 11288 . . . . . . . 8 (𝐴 ∈ ℝ → (𝐴 − 1) ∈ ℝ)
31 peano2rem 11288 . . . . . . . 8 (𝐵 ∈ ℝ → (𝐵 − 1) ∈ ℝ)
3230, 31anim12i 613 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝐴 − 1) ∈ ℝ ∧ (𝐵 − 1) ∈ ℝ))
3332anim1i 615 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (1 < (𝐴 − 1) ∧ 1 < (𝐵 − 1))) → (((𝐴 − 1) ∈ ℝ ∧ (𝐵 − 1) ∈ ℝ) ∧ (1 < (𝐴 − 1) ∧ 1 < (𝐵 − 1))))
34 mulgt1 11834 . . . . . 6 ((((𝐴 − 1) ∈ ℝ ∧ (𝐵 − 1) ∈ ℝ) ∧ (1 < (𝐴 − 1) ∧ 1 < (𝐵 − 1))) → 1 < ((𝐴 − 1) · (𝐵 − 1)))
3533, 34syl 17 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (1 < (𝐴 − 1) ∧ 1 < (𝐵 − 1))) → 1 < ((𝐴 − 1) · (𝐵 − 1)))
3635ex 413 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((1 < (𝐴 − 1) ∧ 1 < (𝐵 − 1)) → 1 < ((𝐴 − 1) · (𝐵 − 1))))
3736adantr 481 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (2 < 𝐴 ∧ 2 < 𝐵)) → ((1 < (𝐴 − 1) ∧ 1 < (𝐵 − 1)) → 1 < ((𝐴 − 1) · (𝐵 − 1))))
38 recn 10961 . . . . . . . . 9 (𝐴 ∈ ℝ → 𝐴 ∈ ℂ)
3910a1i 11 . . . . . . . . 9 (𝐴 ∈ ℝ → 1 ∈ ℂ)
4038, 39jca 512 . . . . . . . 8 (𝐴 ∈ ℝ → (𝐴 ∈ ℂ ∧ 1 ∈ ℂ))
41 recn 10961 . . . . . . . . 9 (𝐵 ∈ ℝ → 𝐵 ∈ ℂ)
4210a1i 11 . . . . . . . . 9 (𝐵 ∈ ℝ → 1 ∈ ℂ)
4341, 42jca 512 . . . . . . . 8 (𝐵 ∈ ℝ → (𝐵 ∈ ℂ ∧ 1 ∈ ℂ))
4440, 43anim12i 613 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝐴 ∈ ℂ ∧ 1 ∈ ℂ) ∧ (𝐵 ∈ ℂ ∧ 1 ∈ ℂ)))
45 mulsub 11418 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 1 ∈ ℂ) ∧ (𝐵 ∈ ℂ ∧ 1 ∈ ℂ)) → ((𝐴 − 1) · (𝐵 − 1)) = (((𝐴 · 𝐵) + (1 · 1)) − ((𝐴 · 1) + (𝐵 · 1))))
4644, 45syl 17 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝐴 − 1) · (𝐵 − 1)) = (((𝐴 · 𝐵) + (1 · 1)) − ((𝐴 · 1) + (𝐵 · 1))))
4746breq2d 5086 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (1 < ((𝐴 − 1) · (𝐵 − 1)) ↔ 1 < (((𝐴 · 𝐵) + (1 · 1)) − ((𝐴 · 1) + (𝐵 · 1)))))
4847biimpd 228 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (1 < ((𝐴 − 1) · (𝐵 − 1)) → 1 < (((𝐴 · 𝐵) + (1 · 1)) − ((𝐴 · 1) + (𝐵 · 1)))))
4948adantr 481 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (2 < 𝐴 ∧ 2 < 𝐵)) → (1 < ((𝐴 − 1) · (𝐵 − 1)) → 1 < (((𝐴 · 𝐵) + (1 · 1)) − ((𝐴 · 1) + (𝐵 · 1)))))
5010mulid2i 10980 . . . . . . . . 9 (1 · 1) = 1
51 eqcom 2745 . . . . . . . . . 10 ((1 · 1) = 1 ↔ 1 = (1 · 1))
5251biimpi 215 . . . . . . . . 9 ((1 · 1) = 1 → 1 = (1 · 1))
5350, 52mp1i 13 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → 1 = (1 · 1))
5453oveq2d 7291 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝐴 · 𝐵) + 1) = ((𝐴 · 𝐵) + (1 · 1)))
55 mulid1 10973 . . . . . . . . . . 11 (𝐴 ∈ ℂ → (𝐴 · 1) = 𝐴)
56 eqcom 2745 . . . . . . . . . . . 12 ((𝐴 · 1) = 𝐴𝐴 = (𝐴 · 1))
5756biimpi 215 . . . . . . . . . . 11 ((𝐴 · 1) = 𝐴𝐴 = (𝐴 · 1))
5855, 57syl 17 . . . . . . . . . 10 (𝐴 ∈ ℂ → 𝐴 = (𝐴 · 1))
5938, 58syl 17 . . . . . . . . 9 (𝐴 ∈ ℝ → 𝐴 = (𝐴 · 1))
6059adantr 481 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → 𝐴 = (𝐴 · 1))
61 mulid1 10973 . . . . . . . . . . 11 (𝐵 ∈ ℂ → (𝐵 · 1) = 𝐵)
6241, 61syl 17 . . . . . . . . . 10 (𝐵 ∈ ℝ → (𝐵 · 1) = 𝐵)
63 eqcom 2745 . . . . . . . . . . 11 ((𝐵 · 1) = 𝐵𝐵 = (𝐵 · 1))
6463biimpi 215 . . . . . . . . . 10 ((𝐵 · 1) = 𝐵𝐵 = (𝐵 · 1))
6562, 64syl 17 . . . . . . . . 9 (𝐵 ∈ ℝ → 𝐵 = (𝐵 · 1))
6665adantl 482 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → 𝐵 = (𝐵 · 1))
6760, 66oveq12d 7293 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 + 𝐵) = ((𝐴 · 1) + (𝐵 · 1)))
6854, 67oveq12d 7293 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (((𝐴 · 𝐵) + 1) − (𝐴 + 𝐵)) = (((𝐴 · 𝐵) + (1 · 1)) − ((𝐴 · 1) + (𝐵 · 1))))
6968breq2d 5086 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (1 < (((𝐴 · 𝐵) + 1) − (𝐴 + 𝐵)) ↔ 1 < (((𝐴 · 𝐵) + (1 · 1)) − ((𝐴 · 1) + (𝐵 · 1)))))
70 readdcl 10954 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 + 𝐵) ∈ ℝ)
715a1i 11 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → 1 ∈ ℝ)
72 remulcl 10956 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 · 𝐵) ∈ ℝ)
73 readdcl 10954 . . . . . . . 8 (((𝐴 · 𝐵) ∈ ℝ ∧ 1 ∈ ℝ) → ((𝐴 · 𝐵) + 1) ∈ ℝ)
7472, 71, 73syl2anc 584 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝐴 · 𝐵) + 1) ∈ ℝ)
75 ltaddsub2 11450 . . . . . . 7 (((𝐴 + 𝐵) ∈ ℝ ∧ 1 ∈ ℝ ∧ ((𝐴 · 𝐵) + 1) ∈ ℝ) → (((𝐴 + 𝐵) + 1) < ((𝐴 · 𝐵) + 1) ↔ 1 < (((𝐴 · 𝐵) + 1) − (𝐴 + 𝐵))))
7670, 71, 74, 75syl3anc 1370 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (((𝐴 + 𝐵) + 1) < ((𝐴 · 𝐵) + 1) ↔ 1 < (((𝐴 · 𝐵) + 1) − (𝐴 + 𝐵))))
77 ltadd1 11442 . . . . . . . . 9 (((𝐴 + 𝐵) ∈ ℝ ∧ (𝐴 · 𝐵) ∈ ℝ ∧ 1 ∈ ℝ) → ((𝐴 + 𝐵) < (𝐴 · 𝐵) ↔ ((𝐴 + 𝐵) + 1) < ((𝐴 · 𝐵) + 1)))
7870, 72, 71, 77syl3anc 1370 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝐴 + 𝐵) < (𝐴 · 𝐵) ↔ ((𝐴 + 𝐵) + 1) < ((𝐴 · 𝐵) + 1)))
7978bicomd 222 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (((𝐴 + 𝐵) + 1) < ((𝐴 · 𝐵) + 1) ↔ (𝐴 + 𝐵) < (𝐴 · 𝐵)))
8079biimpd 228 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (((𝐴 + 𝐵) + 1) < ((𝐴 · 𝐵) + 1) → (𝐴 + 𝐵) < (𝐴 · 𝐵)))
8176, 80sylbird 259 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (1 < (((𝐴 · 𝐵) + 1) − (𝐴 + 𝐵)) → (𝐴 + 𝐵) < (𝐴 · 𝐵)))
8269, 81sylbird 259 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (1 < (((𝐴 · 𝐵) + (1 · 1)) − ((𝐴 · 1) + (𝐵 · 1))) → (𝐴 + 𝐵) < (𝐴 · 𝐵)))
8382adantr 481 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (2 < 𝐴 ∧ 2 < 𝐵)) → (1 < (((𝐴 · 𝐵) + (1 · 1)) − ((𝐴 · 1) + (𝐵 · 1))) → (𝐴 + 𝐵) < (𝐴 · 𝐵)))
8437, 49, 833syld 60 . 2 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (2 < 𝐴 ∧ 2 < 𝐵)) → ((1 < (𝐴 − 1) ∧ 1 < (𝐵 − 1)) → (𝐴 + 𝐵) < (𝐴 · 𝐵)))
8529, 84mpd 15 1 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (2 < 𝐴 ∧ 2 < 𝐵)) → (𝐴 + 𝐵) < (𝐴 · 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1539  wcel 2106   class class class wbr 5074  (class class class)co 7275  cc 10869  cr 10870  1c1 10872   + caddc 10874   · cmul 10876   < clt 11009  cmin 11205  2c2 12028
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-po 5503  df-so 5504  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-er 8498  df-en 8734  df-dom 8735  df-sdom 8736  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-2 12036
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator