Users' Mathboxes Mathbox for Stefan Allan < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  addltmulALT Structured version   Visualization version   GIF version

Theorem addltmulALT 30229
Description: A proof readability experiment for addltmul 11861. (Contributed by Stefan Allan, 30-Oct-2010.) (New usage is discouraged.) (Proof modification is discouraged.)
Assertion
Ref Expression
addltmulALT (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (2 < 𝐴 ∧ 2 < 𝐵)) → (𝐴 + 𝐵) < (𝐴 · 𝐵))

Proof of Theorem addltmulALT
StepHypRef Expression
1 simpr 488 . . . . 5 ((𝐴 ∈ ℝ ∧ 2 < 𝐴) → 2 < 𝐴)
2 2re 11699 . . . . . . . 8 2 ∈ ℝ
32a1i 11 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 2 < 𝐴) → 2 ∈ ℝ)
4 simpl 486 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 2 < 𝐴) → 𝐴 ∈ ℝ)
5 1re 10630 . . . . . . . 8 1 ∈ ℝ
65a1i 11 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 2 < 𝐴) → 1 ∈ ℝ)
7 ltsub1 11125 . . . . . . 7 ((2 ∈ ℝ ∧ 𝐴 ∈ ℝ ∧ 1 ∈ ℝ) → (2 < 𝐴 ↔ (2 − 1) < (𝐴 − 1)))
83, 4, 6, 7syl3anc 1368 . . . . . 6 ((𝐴 ∈ ℝ ∧ 2 < 𝐴) → (2 < 𝐴 ↔ (2 − 1) < (𝐴 − 1)))
9 2cn 11700 . . . . . . . . 9 2 ∈ ℂ
10 ax-1cn 10584 . . . . . . . . 9 1 ∈ ℂ
11 df-2 11688 . . . . . . . . . 10 2 = (1 + 1)
1211eqcomi 2807 . . . . . . . . 9 (1 + 1) = 2
139, 10, 10, 12subaddrii 10964 . . . . . . . 8 (2 − 1) = 1
1413breq1i 5037 . . . . . . 7 ((2 − 1) < (𝐴 − 1) ↔ 1 < (𝐴 − 1))
1514a1i 11 . . . . . 6 ((𝐴 ∈ ℝ ∧ 2 < 𝐴) → ((2 − 1) < (𝐴 − 1) ↔ 1 < (𝐴 − 1)))
168, 15bitrd 282 . . . . 5 ((𝐴 ∈ ℝ ∧ 2 < 𝐴) → (2 < 𝐴 ↔ 1 < (𝐴 − 1)))
171, 16mpbid 235 . . . 4 ((𝐴 ∈ ℝ ∧ 2 < 𝐴) → 1 < (𝐴 − 1))
18 simpr 488 . . . . 5 ((𝐵 ∈ ℝ ∧ 2 < 𝐵) → 2 < 𝐵)
192a1i 11 . . . . . . 7 ((𝐵 ∈ ℝ ∧ 2 < 𝐵) → 2 ∈ ℝ)
20 simpl 486 . . . . . . 7 ((𝐵 ∈ ℝ ∧ 2 < 𝐵) → 𝐵 ∈ ℝ)
215a1i 11 . . . . . . 7 ((𝐵 ∈ ℝ ∧ 2 < 𝐵) → 1 ∈ ℝ)
22 ltsub1 11125 . . . . . . 7 ((2 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 ∈ ℝ) → (2 < 𝐵 ↔ (2 − 1) < (𝐵 − 1)))
2319, 20, 21, 22syl3anc 1368 . . . . . 6 ((𝐵 ∈ ℝ ∧ 2 < 𝐵) → (2 < 𝐵 ↔ (2 − 1) < (𝐵 − 1)))
2413breq1i 5037 . . . . . . 7 ((2 − 1) < (𝐵 − 1) ↔ 1 < (𝐵 − 1))
2524a1i 11 . . . . . 6 ((𝐵 ∈ ℝ ∧ 2 < 𝐵) → ((2 − 1) < (𝐵 − 1) ↔ 1 < (𝐵 − 1)))
2623, 25bitrd 282 . . . . 5 ((𝐵 ∈ ℝ ∧ 2 < 𝐵) → (2 < 𝐵 ↔ 1 < (𝐵 − 1)))
2718, 26mpbid 235 . . . 4 ((𝐵 ∈ ℝ ∧ 2 < 𝐵) → 1 < (𝐵 − 1))
2817, 27anim12i 615 . . 3 (((𝐴 ∈ ℝ ∧ 2 < 𝐴) ∧ (𝐵 ∈ ℝ ∧ 2 < 𝐵)) → (1 < (𝐴 − 1) ∧ 1 < (𝐵 − 1)))
2928an4s 659 . 2 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (2 < 𝐴 ∧ 2 < 𝐵)) → (1 < (𝐴 − 1) ∧ 1 < (𝐵 − 1)))
30 peano2rem 10942 . . . . . . . 8 (𝐴 ∈ ℝ → (𝐴 − 1) ∈ ℝ)
31 peano2rem 10942 . . . . . . . 8 (𝐵 ∈ ℝ → (𝐵 − 1) ∈ ℝ)
3230, 31anim12i 615 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝐴 − 1) ∈ ℝ ∧ (𝐵 − 1) ∈ ℝ))
3332anim1i 617 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (1 < (𝐴 − 1) ∧ 1 < (𝐵 − 1))) → (((𝐴 − 1) ∈ ℝ ∧ (𝐵 − 1) ∈ ℝ) ∧ (1 < (𝐴 − 1) ∧ 1 < (𝐵 − 1))))
34 mulgt1 11488 . . . . . 6 ((((𝐴 − 1) ∈ ℝ ∧ (𝐵 − 1) ∈ ℝ) ∧ (1 < (𝐴 − 1) ∧ 1 < (𝐵 − 1))) → 1 < ((𝐴 − 1) · (𝐵 − 1)))
3533, 34syl 17 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (1 < (𝐴 − 1) ∧ 1 < (𝐵 − 1))) → 1 < ((𝐴 − 1) · (𝐵 − 1)))
3635ex 416 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((1 < (𝐴 − 1) ∧ 1 < (𝐵 − 1)) → 1 < ((𝐴 − 1) · (𝐵 − 1))))
3736adantr 484 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (2 < 𝐴 ∧ 2 < 𝐵)) → ((1 < (𝐴 − 1) ∧ 1 < (𝐵 − 1)) → 1 < ((𝐴 − 1) · (𝐵 − 1))))
38 recn 10616 . . . . . . . . 9 (𝐴 ∈ ℝ → 𝐴 ∈ ℂ)
3910a1i 11 . . . . . . . . 9 (𝐴 ∈ ℝ → 1 ∈ ℂ)
4038, 39jca 515 . . . . . . . 8 (𝐴 ∈ ℝ → (𝐴 ∈ ℂ ∧ 1 ∈ ℂ))
41 recn 10616 . . . . . . . . 9 (𝐵 ∈ ℝ → 𝐵 ∈ ℂ)
4210a1i 11 . . . . . . . . 9 (𝐵 ∈ ℝ → 1 ∈ ℂ)
4341, 42jca 515 . . . . . . . 8 (𝐵 ∈ ℝ → (𝐵 ∈ ℂ ∧ 1 ∈ ℂ))
4440, 43anim12i 615 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝐴 ∈ ℂ ∧ 1 ∈ ℂ) ∧ (𝐵 ∈ ℂ ∧ 1 ∈ ℂ)))
45 mulsub 11072 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 1 ∈ ℂ) ∧ (𝐵 ∈ ℂ ∧ 1 ∈ ℂ)) → ((𝐴 − 1) · (𝐵 − 1)) = (((𝐴 · 𝐵) + (1 · 1)) − ((𝐴 · 1) + (𝐵 · 1))))
4644, 45syl 17 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝐴 − 1) · (𝐵 − 1)) = (((𝐴 · 𝐵) + (1 · 1)) − ((𝐴 · 1) + (𝐵 · 1))))
4746breq2d 5042 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (1 < ((𝐴 − 1) · (𝐵 − 1)) ↔ 1 < (((𝐴 · 𝐵) + (1 · 1)) − ((𝐴 · 1) + (𝐵 · 1)))))
4847biimpd 232 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (1 < ((𝐴 − 1) · (𝐵 − 1)) → 1 < (((𝐴 · 𝐵) + (1 · 1)) − ((𝐴 · 1) + (𝐵 · 1)))))
4948adantr 484 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (2 < 𝐴 ∧ 2 < 𝐵)) → (1 < ((𝐴 − 1) · (𝐵 − 1)) → 1 < (((𝐴 · 𝐵) + (1 · 1)) − ((𝐴 · 1) + (𝐵 · 1)))))
5010mulid2i 10635 . . . . . . . . 9 (1 · 1) = 1
51 eqcom 2805 . . . . . . . . . 10 ((1 · 1) = 1 ↔ 1 = (1 · 1))
5251biimpi 219 . . . . . . . . 9 ((1 · 1) = 1 → 1 = (1 · 1))
5350, 52mp1i 13 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → 1 = (1 · 1))
5453oveq2d 7151 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝐴 · 𝐵) + 1) = ((𝐴 · 𝐵) + (1 · 1)))
55 mulid1 10628 . . . . . . . . . . 11 (𝐴 ∈ ℂ → (𝐴 · 1) = 𝐴)
56 eqcom 2805 . . . . . . . . . . . 12 ((𝐴 · 1) = 𝐴𝐴 = (𝐴 · 1))
5756biimpi 219 . . . . . . . . . . 11 ((𝐴 · 1) = 𝐴𝐴 = (𝐴 · 1))
5855, 57syl 17 . . . . . . . . . 10 (𝐴 ∈ ℂ → 𝐴 = (𝐴 · 1))
5938, 58syl 17 . . . . . . . . 9 (𝐴 ∈ ℝ → 𝐴 = (𝐴 · 1))
6059adantr 484 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → 𝐴 = (𝐴 · 1))
61 mulid1 10628 . . . . . . . . . . 11 (𝐵 ∈ ℂ → (𝐵 · 1) = 𝐵)
6241, 61syl 17 . . . . . . . . . 10 (𝐵 ∈ ℝ → (𝐵 · 1) = 𝐵)
63 eqcom 2805 . . . . . . . . . . 11 ((𝐵 · 1) = 𝐵𝐵 = (𝐵 · 1))
6463biimpi 219 . . . . . . . . . 10 ((𝐵 · 1) = 𝐵𝐵 = (𝐵 · 1))
6562, 64syl 17 . . . . . . . . 9 (𝐵 ∈ ℝ → 𝐵 = (𝐵 · 1))
6665adantl 485 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → 𝐵 = (𝐵 · 1))
6760, 66oveq12d 7153 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 + 𝐵) = ((𝐴 · 1) + (𝐵 · 1)))
6854, 67oveq12d 7153 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (((𝐴 · 𝐵) + 1) − (𝐴 + 𝐵)) = (((𝐴 · 𝐵) + (1 · 1)) − ((𝐴 · 1) + (𝐵 · 1))))
6968breq2d 5042 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (1 < (((𝐴 · 𝐵) + 1) − (𝐴 + 𝐵)) ↔ 1 < (((𝐴 · 𝐵) + (1 · 1)) − ((𝐴 · 1) + (𝐵 · 1)))))
70 readdcl 10609 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 + 𝐵) ∈ ℝ)
715a1i 11 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → 1 ∈ ℝ)
72 remulcl 10611 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 · 𝐵) ∈ ℝ)
73 readdcl 10609 . . . . . . . 8 (((𝐴 · 𝐵) ∈ ℝ ∧ 1 ∈ ℝ) → ((𝐴 · 𝐵) + 1) ∈ ℝ)
7472, 71, 73syl2anc 587 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝐴 · 𝐵) + 1) ∈ ℝ)
75 ltaddsub2 11104 . . . . . . 7 (((𝐴 + 𝐵) ∈ ℝ ∧ 1 ∈ ℝ ∧ ((𝐴 · 𝐵) + 1) ∈ ℝ) → (((𝐴 + 𝐵) + 1) < ((𝐴 · 𝐵) + 1) ↔ 1 < (((𝐴 · 𝐵) + 1) − (𝐴 + 𝐵))))
7670, 71, 74, 75syl3anc 1368 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (((𝐴 + 𝐵) + 1) < ((𝐴 · 𝐵) + 1) ↔ 1 < (((𝐴 · 𝐵) + 1) − (𝐴 + 𝐵))))
77 ltadd1 11096 . . . . . . . . 9 (((𝐴 + 𝐵) ∈ ℝ ∧ (𝐴 · 𝐵) ∈ ℝ ∧ 1 ∈ ℝ) → ((𝐴 + 𝐵) < (𝐴 · 𝐵) ↔ ((𝐴 + 𝐵) + 1) < ((𝐴 · 𝐵) + 1)))
7870, 72, 71, 77syl3anc 1368 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝐴 + 𝐵) < (𝐴 · 𝐵) ↔ ((𝐴 + 𝐵) + 1) < ((𝐴 · 𝐵) + 1)))
7978bicomd 226 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (((𝐴 + 𝐵) + 1) < ((𝐴 · 𝐵) + 1) ↔ (𝐴 + 𝐵) < (𝐴 · 𝐵)))
8079biimpd 232 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (((𝐴 + 𝐵) + 1) < ((𝐴 · 𝐵) + 1) → (𝐴 + 𝐵) < (𝐴 · 𝐵)))
8176, 80sylbird 263 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (1 < (((𝐴 · 𝐵) + 1) − (𝐴 + 𝐵)) → (𝐴 + 𝐵) < (𝐴 · 𝐵)))
8269, 81sylbird 263 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (1 < (((𝐴 · 𝐵) + (1 · 1)) − ((𝐴 · 1) + (𝐵 · 1))) → (𝐴 + 𝐵) < (𝐴 · 𝐵)))
8382adantr 484 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (2 < 𝐴 ∧ 2 < 𝐵)) → (1 < (((𝐴 · 𝐵) + (1 · 1)) − ((𝐴 · 1) + (𝐵 · 1))) → (𝐴 + 𝐵) < (𝐴 · 𝐵)))
8437, 49, 833syld 60 . 2 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (2 < 𝐴 ∧ 2 < 𝐵)) → ((1 < (𝐴 − 1) ∧ 1 < (𝐵 − 1)) → (𝐴 + 𝐵) < (𝐴 · 𝐵)))
8529, 84mpd 15 1 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (2 < 𝐴 ∧ 2 < 𝐵)) → (𝐴 + 𝐵) < (𝐴 · 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399   = wceq 1538  wcel 2111   class class class wbr 5030  (class class class)co 7135  cc 10524  cr 10525  1c1 10527   + caddc 10529   · cmul 10531   < clt 10664  cmin 10859  2c2 11680
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-op 4532  df-uni 4801  df-br 5031  df-opab 5093  df-mpt 5111  df-id 5425  df-po 5438  df-so 5439  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-er 8272  df-en 8493  df-dom 8494  df-sdom 8495  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-2 11688
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator