Users' Mathboxes Mathbox for Stefan Allan < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  addltmulALT Structured version   Visualization version   GIF version

Theorem addltmulALT 32276
Description: A proof readability experiment for addltmul 12486. (Contributed by Stefan Allan, 30-Oct-2010.) (New usage is discouraged.) (Proof modification is discouraged.)
Assertion
Ref Expression
addltmulALT (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (2 < 𝐴 ∧ 2 < 𝐵)) → (𝐴 + 𝐵) < (𝐴 · 𝐵))

Proof of Theorem addltmulALT
StepHypRef Expression
1 simpr 483 . . . . 5 ((𝐴 ∈ ℝ ∧ 2 < 𝐴) → 2 < 𝐴)
2 2re 12324 . . . . . . . 8 2 ∈ ℝ
32a1i 11 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 2 < 𝐴) → 2 ∈ ℝ)
4 simpl 481 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 2 < 𝐴) → 𝐴 ∈ ℝ)
5 1re 11252 . . . . . . . 8 1 ∈ ℝ
65a1i 11 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 2 < 𝐴) → 1 ∈ ℝ)
7 ltsub1 11748 . . . . . . 7 ((2 ∈ ℝ ∧ 𝐴 ∈ ℝ ∧ 1 ∈ ℝ) → (2 < 𝐴 ↔ (2 − 1) < (𝐴 − 1)))
83, 4, 6, 7syl3anc 1368 . . . . . 6 ((𝐴 ∈ ℝ ∧ 2 < 𝐴) → (2 < 𝐴 ↔ (2 − 1) < (𝐴 − 1)))
9 2cn 12325 . . . . . . . . 9 2 ∈ ℂ
10 ax-1cn 11204 . . . . . . . . 9 1 ∈ ℂ
11 df-2 12313 . . . . . . . . . 10 2 = (1 + 1)
1211eqcomi 2737 . . . . . . . . 9 (1 + 1) = 2
139, 10, 10, 12subaddrii 11587 . . . . . . . 8 (2 − 1) = 1
1413breq1i 5159 . . . . . . 7 ((2 − 1) < (𝐴 − 1) ↔ 1 < (𝐴 − 1))
1514a1i 11 . . . . . 6 ((𝐴 ∈ ℝ ∧ 2 < 𝐴) → ((2 − 1) < (𝐴 − 1) ↔ 1 < (𝐴 − 1)))
168, 15bitrd 278 . . . . 5 ((𝐴 ∈ ℝ ∧ 2 < 𝐴) → (2 < 𝐴 ↔ 1 < (𝐴 − 1)))
171, 16mpbid 231 . . . 4 ((𝐴 ∈ ℝ ∧ 2 < 𝐴) → 1 < (𝐴 − 1))
18 simpr 483 . . . . 5 ((𝐵 ∈ ℝ ∧ 2 < 𝐵) → 2 < 𝐵)
192a1i 11 . . . . . . 7 ((𝐵 ∈ ℝ ∧ 2 < 𝐵) → 2 ∈ ℝ)
20 simpl 481 . . . . . . 7 ((𝐵 ∈ ℝ ∧ 2 < 𝐵) → 𝐵 ∈ ℝ)
215a1i 11 . . . . . . 7 ((𝐵 ∈ ℝ ∧ 2 < 𝐵) → 1 ∈ ℝ)
22 ltsub1 11748 . . . . . . 7 ((2 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 ∈ ℝ) → (2 < 𝐵 ↔ (2 − 1) < (𝐵 − 1)))
2319, 20, 21, 22syl3anc 1368 . . . . . 6 ((𝐵 ∈ ℝ ∧ 2 < 𝐵) → (2 < 𝐵 ↔ (2 − 1) < (𝐵 − 1)))
2413breq1i 5159 . . . . . . 7 ((2 − 1) < (𝐵 − 1) ↔ 1 < (𝐵 − 1))
2524a1i 11 . . . . . 6 ((𝐵 ∈ ℝ ∧ 2 < 𝐵) → ((2 − 1) < (𝐵 − 1) ↔ 1 < (𝐵 − 1)))
2623, 25bitrd 278 . . . . 5 ((𝐵 ∈ ℝ ∧ 2 < 𝐵) → (2 < 𝐵 ↔ 1 < (𝐵 − 1)))
2718, 26mpbid 231 . . . 4 ((𝐵 ∈ ℝ ∧ 2 < 𝐵) → 1 < (𝐵 − 1))
2817, 27anim12i 611 . . 3 (((𝐴 ∈ ℝ ∧ 2 < 𝐴) ∧ (𝐵 ∈ ℝ ∧ 2 < 𝐵)) → (1 < (𝐴 − 1) ∧ 1 < (𝐵 − 1)))
2928an4s 658 . 2 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (2 < 𝐴 ∧ 2 < 𝐵)) → (1 < (𝐴 − 1) ∧ 1 < (𝐵 − 1)))
30 peano2rem 11565 . . . . . . . 8 (𝐴 ∈ ℝ → (𝐴 − 1) ∈ ℝ)
31 peano2rem 11565 . . . . . . . 8 (𝐵 ∈ ℝ → (𝐵 − 1) ∈ ℝ)
3230, 31anim12i 611 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝐴 − 1) ∈ ℝ ∧ (𝐵 − 1) ∈ ℝ))
3332anim1i 613 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (1 < (𝐴 − 1) ∧ 1 < (𝐵 − 1))) → (((𝐴 − 1) ∈ ℝ ∧ (𝐵 − 1) ∈ ℝ) ∧ (1 < (𝐴 − 1) ∧ 1 < (𝐵 − 1))))
34 mulgt1 12111 . . . . . 6 ((((𝐴 − 1) ∈ ℝ ∧ (𝐵 − 1) ∈ ℝ) ∧ (1 < (𝐴 − 1) ∧ 1 < (𝐵 − 1))) → 1 < ((𝐴 − 1) · (𝐵 − 1)))
3533, 34syl 17 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (1 < (𝐴 − 1) ∧ 1 < (𝐵 − 1))) → 1 < ((𝐴 − 1) · (𝐵 − 1)))
3635ex 411 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((1 < (𝐴 − 1) ∧ 1 < (𝐵 − 1)) → 1 < ((𝐴 − 1) · (𝐵 − 1))))
3736adantr 479 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (2 < 𝐴 ∧ 2 < 𝐵)) → ((1 < (𝐴 − 1) ∧ 1 < (𝐵 − 1)) → 1 < ((𝐴 − 1) · (𝐵 − 1))))
38 recn 11236 . . . . . . . . 9 (𝐴 ∈ ℝ → 𝐴 ∈ ℂ)
3910a1i 11 . . . . . . . . 9 (𝐴 ∈ ℝ → 1 ∈ ℂ)
4038, 39jca 510 . . . . . . . 8 (𝐴 ∈ ℝ → (𝐴 ∈ ℂ ∧ 1 ∈ ℂ))
41 recn 11236 . . . . . . . . 9 (𝐵 ∈ ℝ → 𝐵 ∈ ℂ)
4210a1i 11 . . . . . . . . 9 (𝐵 ∈ ℝ → 1 ∈ ℂ)
4341, 42jca 510 . . . . . . . 8 (𝐵 ∈ ℝ → (𝐵 ∈ ℂ ∧ 1 ∈ ℂ))
4440, 43anim12i 611 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝐴 ∈ ℂ ∧ 1 ∈ ℂ) ∧ (𝐵 ∈ ℂ ∧ 1 ∈ ℂ)))
45 mulsub 11695 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 1 ∈ ℂ) ∧ (𝐵 ∈ ℂ ∧ 1 ∈ ℂ)) → ((𝐴 − 1) · (𝐵 − 1)) = (((𝐴 · 𝐵) + (1 · 1)) − ((𝐴 · 1) + (𝐵 · 1))))
4644, 45syl 17 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝐴 − 1) · (𝐵 − 1)) = (((𝐴 · 𝐵) + (1 · 1)) − ((𝐴 · 1) + (𝐵 · 1))))
4746breq2d 5164 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (1 < ((𝐴 − 1) · (𝐵 − 1)) ↔ 1 < (((𝐴 · 𝐵) + (1 · 1)) − ((𝐴 · 1) + (𝐵 · 1)))))
4847biimpd 228 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (1 < ((𝐴 − 1) · (𝐵 − 1)) → 1 < (((𝐴 · 𝐵) + (1 · 1)) − ((𝐴 · 1) + (𝐵 · 1)))))
4948adantr 479 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (2 < 𝐴 ∧ 2 < 𝐵)) → (1 < ((𝐴 − 1) · (𝐵 − 1)) → 1 < (((𝐴 · 𝐵) + (1 · 1)) − ((𝐴 · 1) + (𝐵 · 1)))))
5010mullidi 11257 . . . . . . . . 9 (1 · 1) = 1
51 eqcom 2735 . . . . . . . . . 10 ((1 · 1) = 1 ↔ 1 = (1 · 1))
5251biimpi 215 . . . . . . . . 9 ((1 · 1) = 1 → 1 = (1 · 1))
5350, 52mp1i 13 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → 1 = (1 · 1))
5453oveq2d 7442 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝐴 · 𝐵) + 1) = ((𝐴 · 𝐵) + (1 · 1)))
55 mulrid 11250 . . . . . . . . . . 11 (𝐴 ∈ ℂ → (𝐴 · 1) = 𝐴)
56 eqcom 2735 . . . . . . . . . . . 12 ((𝐴 · 1) = 𝐴𝐴 = (𝐴 · 1))
5756biimpi 215 . . . . . . . . . . 11 ((𝐴 · 1) = 𝐴𝐴 = (𝐴 · 1))
5855, 57syl 17 . . . . . . . . . 10 (𝐴 ∈ ℂ → 𝐴 = (𝐴 · 1))
5938, 58syl 17 . . . . . . . . 9 (𝐴 ∈ ℝ → 𝐴 = (𝐴 · 1))
6059adantr 479 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → 𝐴 = (𝐴 · 1))
61 mulrid 11250 . . . . . . . . . . 11 (𝐵 ∈ ℂ → (𝐵 · 1) = 𝐵)
6241, 61syl 17 . . . . . . . . . 10 (𝐵 ∈ ℝ → (𝐵 · 1) = 𝐵)
63 eqcom 2735 . . . . . . . . . . 11 ((𝐵 · 1) = 𝐵𝐵 = (𝐵 · 1))
6463biimpi 215 . . . . . . . . . 10 ((𝐵 · 1) = 𝐵𝐵 = (𝐵 · 1))
6562, 64syl 17 . . . . . . . . 9 (𝐵 ∈ ℝ → 𝐵 = (𝐵 · 1))
6665adantl 480 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → 𝐵 = (𝐵 · 1))
6760, 66oveq12d 7444 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 + 𝐵) = ((𝐴 · 1) + (𝐵 · 1)))
6854, 67oveq12d 7444 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (((𝐴 · 𝐵) + 1) − (𝐴 + 𝐵)) = (((𝐴 · 𝐵) + (1 · 1)) − ((𝐴 · 1) + (𝐵 · 1))))
6968breq2d 5164 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (1 < (((𝐴 · 𝐵) + 1) − (𝐴 + 𝐵)) ↔ 1 < (((𝐴 · 𝐵) + (1 · 1)) − ((𝐴 · 1) + (𝐵 · 1)))))
70 readdcl 11229 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 + 𝐵) ∈ ℝ)
715a1i 11 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → 1 ∈ ℝ)
72 remulcl 11231 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 · 𝐵) ∈ ℝ)
73 readdcl 11229 . . . . . . . 8 (((𝐴 · 𝐵) ∈ ℝ ∧ 1 ∈ ℝ) → ((𝐴 · 𝐵) + 1) ∈ ℝ)
7472, 71, 73syl2anc 582 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝐴 · 𝐵) + 1) ∈ ℝ)
75 ltaddsub2 11727 . . . . . . 7 (((𝐴 + 𝐵) ∈ ℝ ∧ 1 ∈ ℝ ∧ ((𝐴 · 𝐵) + 1) ∈ ℝ) → (((𝐴 + 𝐵) + 1) < ((𝐴 · 𝐵) + 1) ↔ 1 < (((𝐴 · 𝐵) + 1) − (𝐴 + 𝐵))))
7670, 71, 74, 75syl3anc 1368 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (((𝐴 + 𝐵) + 1) < ((𝐴 · 𝐵) + 1) ↔ 1 < (((𝐴 · 𝐵) + 1) − (𝐴 + 𝐵))))
77 ltadd1 11719 . . . . . . . . 9 (((𝐴 + 𝐵) ∈ ℝ ∧ (𝐴 · 𝐵) ∈ ℝ ∧ 1 ∈ ℝ) → ((𝐴 + 𝐵) < (𝐴 · 𝐵) ↔ ((𝐴 + 𝐵) + 1) < ((𝐴 · 𝐵) + 1)))
7870, 72, 71, 77syl3anc 1368 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝐴 + 𝐵) < (𝐴 · 𝐵) ↔ ((𝐴 + 𝐵) + 1) < ((𝐴 · 𝐵) + 1)))
7978bicomd 222 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (((𝐴 + 𝐵) + 1) < ((𝐴 · 𝐵) + 1) ↔ (𝐴 + 𝐵) < (𝐴 · 𝐵)))
8079biimpd 228 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (((𝐴 + 𝐵) + 1) < ((𝐴 · 𝐵) + 1) → (𝐴 + 𝐵) < (𝐴 · 𝐵)))
8176, 80sylbird 259 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (1 < (((𝐴 · 𝐵) + 1) − (𝐴 + 𝐵)) → (𝐴 + 𝐵) < (𝐴 · 𝐵)))
8269, 81sylbird 259 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (1 < (((𝐴 · 𝐵) + (1 · 1)) − ((𝐴 · 1) + (𝐵 · 1))) → (𝐴 + 𝐵) < (𝐴 · 𝐵)))
8382adantr 479 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (2 < 𝐴 ∧ 2 < 𝐵)) → (1 < (((𝐴 · 𝐵) + (1 · 1)) − ((𝐴 · 1) + (𝐵 · 1))) → (𝐴 + 𝐵) < (𝐴 · 𝐵)))
8437, 49, 833syld 60 . 2 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (2 < 𝐴 ∧ 2 < 𝐵)) → ((1 < (𝐴 − 1) ∧ 1 < (𝐵 − 1)) → (𝐴 + 𝐵) < (𝐴 · 𝐵)))
8529, 84mpd 15 1 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (2 < 𝐴 ∧ 2 < 𝐵)) → (𝐴 + 𝐵) < (𝐴 · 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 394   = wceq 1533  wcel 2098   class class class wbr 5152  (class class class)co 7426  cc 11144  cr 11145  1c1 11147   + caddc 11149   · cmul 11151   < clt 11286  cmin 11482  2c2 12305
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2699  ax-sep 5303  ax-nul 5310  ax-pow 5369  ax-pr 5433  ax-un 7746  ax-resscn 11203  ax-1cn 11204  ax-icn 11205  ax-addcl 11206  ax-addrcl 11207  ax-mulcl 11208  ax-mulrcl 11209  ax-mulcom 11210  ax-addass 11211  ax-mulass 11212  ax-distr 11213  ax-i2m1 11214  ax-1ne0 11215  ax-1rid 11216  ax-rnegex 11217  ax-rrecex 11218  ax-cnre 11219  ax-pre-lttri 11220  ax-pre-lttrn 11221  ax-pre-ltadd 11222  ax-pre-mulgt0 11223
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2529  df-eu 2558  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-reu 3375  df-rab 3431  df-v 3475  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4327  df-if 4533  df-pw 4608  df-sn 4633  df-pr 4635  df-op 4639  df-uni 4913  df-br 5153  df-opab 5215  df-mpt 5236  df-id 5580  df-po 5594  df-so 5595  df-xp 5688  df-rel 5689  df-cnv 5690  df-co 5691  df-dm 5692  df-rn 5693  df-res 5694  df-ima 5695  df-iota 6505  df-fun 6555  df-fn 6556  df-f 6557  df-f1 6558  df-fo 6559  df-f1o 6560  df-fv 6561  df-riota 7382  df-ov 7429  df-oprab 7430  df-mpo 7431  df-er 8731  df-en 8971  df-dom 8972  df-sdom 8973  df-pnf 11288  df-mnf 11289  df-xr 11290  df-ltxr 11291  df-le 11292  df-sub 11484  df-neg 11485  df-2 12313
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator