Users' Mathboxes Mathbox for Stefan Allan < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  addltmulALT Structured version   Visualization version   GIF version

Theorem addltmulALT 32478
Description: A proof readability experiment for addltmul 12529. (Contributed by Stefan Allan, 30-Oct-2010.) (New usage is discouraged.) (Proof modification is discouraged.)
Assertion
Ref Expression
addltmulALT (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (2 < 𝐴 ∧ 2 < 𝐵)) → (𝐴 + 𝐵) < (𝐴 · 𝐵))

Proof of Theorem addltmulALT
StepHypRef Expression
1 simpr 484 . . . . 5 ((𝐴 ∈ ℝ ∧ 2 < 𝐴) → 2 < 𝐴)
2 2re 12367 . . . . . . . 8 2 ∈ ℝ
32a1i 11 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 2 < 𝐴) → 2 ∈ ℝ)
4 simpl 482 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 2 < 𝐴) → 𝐴 ∈ ℝ)
5 1re 11290 . . . . . . . 8 1 ∈ ℝ
65a1i 11 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 2 < 𝐴) → 1 ∈ ℝ)
7 ltsub1 11786 . . . . . . 7 ((2 ∈ ℝ ∧ 𝐴 ∈ ℝ ∧ 1 ∈ ℝ) → (2 < 𝐴 ↔ (2 − 1) < (𝐴 − 1)))
83, 4, 6, 7syl3anc 1371 . . . . . 6 ((𝐴 ∈ ℝ ∧ 2 < 𝐴) → (2 < 𝐴 ↔ (2 − 1) < (𝐴 − 1)))
9 2cn 12368 . . . . . . . . 9 2 ∈ ℂ
10 ax-1cn 11242 . . . . . . . . 9 1 ∈ ℂ
11 df-2 12356 . . . . . . . . . 10 2 = (1 + 1)
1211eqcomi 2749 . . . . . . . . 9 (1 + 1) = 2
139, 10, 10, 12subaddrii 11625 . . . . . . . 8 (2 − 1) = 1
1413breq1i 5173 . . . . . . 7 ((2 − 1) < (𝐴 − 1) ↔ 1 < (𝐴 − 1))
1514a1i 11 . . . . . 6 ((𝐴 ∈ ℝ ∧ 2 < 𝐴) → ((2 − 1) < (𝐴 − 1) ↔ 1 < (𝐴 − 1)))
168, 15bitrd 279 . . . . 5 ((𝐴 ∈ ℝ ∧ 2 < 𝐴) → (2 < 𝐴 ↔ 1 < (𝐴 − 1)))
171, 16mpbid 232 . . . 4 ((𝐴 ∈ ℝ ∧ 2 < 𝐴) → 1 < (𝐴 − 1))
18 simpr 484 . . . . 5 ((𝐵 ∈ ℝ ∧ 2 < 𝐵) → 2 < 𝐵)
192a1i 11 . . . . . . 7 ((𝐵 ∈ ℝ ∧ 2 < 𝐵) → 2 ∈ ℝ)
20 simpl 482 . . . . . . 7 ((𝐵 ∈ ℝ ∧ 2 < 𝐵) → 𝐵 ∈ ℝ)
215a1i 11 . . . . . . 7 ((𝐵 ∈ ℝ ∧ 2 < 𝐵) → 1 ∈ ℝ)
22 ltsub1 11786 . . . . . . 7 ((2 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 ∈ ℝ) → (2 < 𝐵 ↔ (2 − 1) < (𝐵 − 1)))
2319, 20, 21, 22syl3anc 1371 . . . . . 6 ((𝐵 ∈ ℝ ∧ 2 < 𝐵) → (2 < 𝐵 ↔ (2 − 1) < (𝐵 − 1)))
2413breq1i 5173 . . . . . . 7 ((2 − 1) < (𝐵 − 1) ↔ 1 < (𝐵 − 1))
2524a1i 11 . . . . . 6 ((𝐵 ∈ ℝ ∧ 2 < 𝐵) → ((2 − 1) < (𝐵 − 1) ↔ 1 < (𝐵 − 1)))
2623, 25bitrd 279 . . . . 5 ((𝐵 ∈ ℝ ∧ 2 < 𝐵) → (2 < 𝐵 ↔ 1 < (𝐵 − 1)))
2718, 26mpbid 232 . . . 4 ((𝐵 ∈ ℝ ∧ 2 < 𝐵) → 1 < (𝐵 − 1))
2817, 27anim12i 612 . . 3 (((𝐴 ∈ ℝ ∧ 2 < 𝐴) ∧ (𝐵 ∈ ℝ ∧ 2 < 𝐵)) → (1 < (𝐴 − 1) ∧ 1 < (𝐵 − 1)))
2928an4s 659 . 2 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (2 < 𝐴 ∧ 2 < 𝐵)) → (1 < (𝐴 − 1) ∧ 1 < (𝐵 − 1)))
30 peano2rem 11603 . . . . . . . 8 (𝐴 ∈ ℝ → (𝐴 − 1) ∈ ℝ)
31 peano2rem 11603 . . . . . . . 8 (𝐵 ∈ ℝ → (𝐵 − 1) ∈ ℝ)
3230, 31anim12i 612 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝐴 − 1) ∈ ℝ ∧ (𝐵 − 1) ∈ ℝ))
3332anim1i 614 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (1 < (𝐴 − 1) ∧ 1 < (𝐵 − 1))) → (((𝐴 − 1) ∈ ℝ ∧ (𝐵 − 1) ∈ ℝ) ∧ (1 < (𝐴 − 1) ∧ 1 < (𝐵 − 1))))
34 mulgt1 12156 . . . . . 6 ((((𝐴 − 1) ∈ ℝ ∧ (𝐵 − 1) ∈ ℝ) ∧ (1 < (𝐴 − 1) ∧ 1 < (𝐵 − 1))) → 1 < ((𝐴 − 1) · (𝐵 − 1)))
3533, 34syl 17 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (1 < (𝐴 − 1) ∧ 1 < (𝐵 − 1))) → 1 < ((𝐴 − 1) · (𝐵 − 1)))
3635ex 412 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((1 < (𝐴 − 1) ∧ 1 < (𝐵 − 1)) → 1 < ((𝐴 − 1) · (𝐵 − 1))))
3736adantr 480 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (2 < 𝐴 ∧ 2 < 𝐵)) → ((1 < (𝐴 − 1) ∧ 1 < (𝐵 − 1)) → 1 < ((𝐴 − 1) · (𝐵 − 1))))
38 recn 11274 . . . . . . . . 9 (𝐴 ∈ ℝ → 𝐴 ∈ ℂ)
3910a1i 11 . . . . . . . . 9 (𝐴 ∈ ℝ → 1 ∈ ℂ)
4038, 39jca 511 . . . . . . . 8 (𝐴 ∈ ℝ → (𝐴 ∈ ℂ ∧ 1 ∈ ℂ))
41 recn 11274 . . . . . . . . 9 (𝐵 ∈ ℝ → 𝐵 ∈ ℂ)
4210a1i 11 . . . . . . . . 9 (𝐵 ∈ ℝ → 1 ∈ ℂ)
4341, 42jca 511 . . . . . . . 8 (𝐵 ∈ ℝ → (𝐵 ∈ ℂ ∧ 1 ∈ ℂ))
4440, 43anim12i 612 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝐴 ∈ ℂ ∧ 1 ∈ ℂ) ∧ (𝐵 ∈ ℂ ∧ 1 ∈ ℂ)))
45 mulsub 11733 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 1 ∈ ℂ) ∧ (𝐵 ∈ ℂ ∧ 1 ∈ ℂ)) → ((𝐴 − 1) · (𝐵 − 1)) = (((𝐴 · 𝐵) + (1 · 1)) − ((𝐴 · 1) + (𝐵 · 1))))
4644, 45syl 17 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝐴 − 1) · (𝐵 − 1)) = (((𝐴 · 𝐵) + (1 · 1)) − ((𝐴 · 1) + (𝐵 · 1))))
4746breq2d 5178 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (1 < ((𝐴 − 1) · (𝐵 − 1)) ↔ 1 < (((𝐴 · 𝐵) + (1 · 1)) − ((𝐴 · 1) + (𝐵 · 1)))))
4847biimpd 229 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (1 < ((𝐴 − 1) · (𝐵 − 1)) → 1 < (((𝐴 · 𝐵) + (1 · 1)) − ((𝐴 · 1) + (𝐵 · 1)))))
4948adantr 480 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (2 < 𝐴 ∧ 2 < 𝐵)) → (1 < ((𝐴 − 1) · (𝐵 − 1)) → 1 < (((𝐴 · 𝐵) + (1 · 1)) − ((𝐴 · 1) + (𝐵 · 1)))))
5010mullidi 11295 . . . . . . . . 9 (1 · 1) = 1
51 eqcom 2747 . . . . . . . . . 10 ((1 · 1) = 1 ↔ 1 = (1 · 1))
5251biimpi 216 . . . . . . . . 9 ((1 · 1) = 1 → 1 = (1 · 1))
5350, 52mp1i 13 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → 1 = (1 · 1))
5453oveq2d 7464 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝐴 · 𝐵) + 1) = ((𝐴 · 𝐵) + (1 · 1)))
55 mulrid 11288 . . . . . . . . . . 11 (𝐴 ∈ ℂ → (𝐴 · 1) = 𝐴)
56 eqcom 2747 . . . . . . . . . . . 12 ((𝐴 · 1) = 𝐴𝐴 = (𝐴 · 1))
5756biimpi 216 . . . . . . . . . . 11 ((𝐴 · 1) = 𝐴𝐴 = (𝐴 · 1))
5855, 57syl 17 . . . . . . . . . 10 (𝐴 ∈ ℂ → 𝐴 = (𝐴 · 1))
5938, 58syl 17 . . . . . . . . 9 (𝐴 ∈ ℝ → 𝐴 = (𝐴 · 1))
6059adantr 480 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → 𝐴 = (𝐴 · 1))
61 mulrid 11288 . . . . . . . . . . 11 (𝐵 ∈ ℂ → (𝐵 · 1) = 𝐵)
6241, 61syl 17 . . . . . . . . . 10 (𝐵 ∈ ℝ → (𝐵 · 1) = 𝐵)
63 eqcom 2747 . . . . . . . . . . 11 ((𝐵 · 1) = 𝐵𝐵 = (𝐵 · 1))
6463biimpi 216 . . . . . . . . . 10 ((𝐵 · 1) = 𝐵𝐵 = (𝐵 · 1))
6562, 64syl 17 . . . . . . . . 9 (𝐵 ∈ ℝ → 𝐵 = (𝐵 · 1))
6665adantl 481 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → 𝐵 = (𝐵 · 1))
6760, 66oveq12d 7466 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 + 𝐵) = ((𝐴 · 1) + (𝐵 · 1)))
6854, 67oveq12d 7466 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (((𝐴 · 𝐵) + 1) − (𝐴 + 𝐵)) = (((𝐴 · 𝐵) + (1 · 1)) − ((𝐴 · 1) + (𝐵 · 1))))
6968breq2d 5178 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (1 < (((𝐴 · 𝐵) + 1) − (𝐴 + 𝐵)) ↔ 1 < (((𝐴 · 𝐵) + (1 · 1)) − ((𝐴 · 1) + (𝐵 · 1)))))
70 readdcl 11267 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 + 𝐵) ∈ ℝ)
715a1i 11 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → 1 ∈ ℝ)
72 remulcl 11269 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 · 𝐵) ∈ ℝ)
73 readdcl 11267 . . . . . . . 8 (((𝐴 · 𝐵) ∈ ℝ ∧ 1 ∈ ℝ) → ((𝐴 · 𝐵) + 1) ∈ ℝ)
7472, 71, 73syl2anc 583 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝐴 · 𝐵) + 1) ∈ ℝ)
75 ltaddsub2 11765 . . . . . . 7 (((𝐴 + 𝐵) ∈ ℝ ∧ 1 ∈ ℝ ∧ ((𝐴 · 𝐵) + 1) ∈ ℝ) → (((𝐴 + 𝐵) + 1) < ((𝐴 · 𝐵) + 1) ↔ 1 < (((𝐴 · 𝐵) + 1) − (𝐴 + 𝐵))))
7670, 71, 74, 75syl3anc 1371 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (((𝐴 + 𝐵) + 1) < ((𝐴 · 𝐵) + 1) ↔ 1 < (((𝐴 · 𝐵) + 1) − (𝐴 + 𝐵))))
77 ltadd1 11757 . . . . . . . . 9 (((𝐴 + 𝐵) ∈ ℝ ∧ (𝐴 · 𝐵) ∈ ℝ ∧ 1 ∈ ℝ) → ((𝐴 + 𝐵) < (𝐴 · 𝐵) ↔ ((𝐴 + 𝐵) + 1) < ((𝐴 · 𝐵) + 1)))
7870, 72, 71, 77syl3anc 1371 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝐴 + 𝐵) < (𝐴 · 𝐵) ↔ ((𝐴 + 𝐵) + 1) < ((𝐴 · 𝐵) + 1)))
7978bicomd 223 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (((𝐴 + 𝐵) + 1) < ((𝐴 · 𝐵) + 1) ↔ (𝐴 + 𝐵) < (𝐴 · 𝐵)))
8079biimpd 229 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (((𝐴 + 𝐵) + 1) < ((𝐴 · 𝐵) + 1) → (𝐴 + 𝐵) < (𝐴 · 𝐵)))
8176, 80sylbird 260 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (1 < (((𝐴 · 𝐵) + 1) − (𝐴 + 𝐵)) → (𝐴 + 𝐵) < (𝐴 · 𝐵)))
8269, 81sylbird 260 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (1 < (((𝐴 · 𝐵) + (1 · 1)) − ((𝐴 · 1) + (𝐵 · 1))) → (𝐴 + 𝐵) < (𝐴 · 𝐵)))
8382adantr 480 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (2 < 𝐴 ∧ 2 < 𝐵)) → (1 < (((𝐴 · 𝐵) + (1 · 1)) − ((𝐴 · 1) + (𝐵 · 1))) → (𝐴 + 𝐵) < (𝐴 · 𝐵)))
8437, 49, 833syld 60 . 2 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (2 < 𝐴 ∧ 2 < 𝐵)) → ((1 < (𝐴 − 1) ∧ 1 < (𝐵 − 1)) → (𝐴 + 𝐵) < (𝐴 · 𝐵)))
8529, 84mpd 15 1 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (2 < 𝐴 ∧ 2 < 𝐵)) → (𝐴 + 𝐵) < (𝐴 · 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wcel 2108   class class class wbr 5166  (class class class)co 7448  cc 11182  cr 11183  1c1 11185   + caddc 11187   · cmul 11189   < clt 11324  cmin 11520  2c2 12348
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-po 5607  df-so 5608  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-er 8763  df-en 9004  df-dom 9005  df-sdom 9006  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-2 12356
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator