MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  zeo5 Structured version   Visualization version   GIF version

Theorem zeo5 16277
Description: An integer is either even or odd, version of zeo3 16258 avoiding the negation of the representation of an odd number. (Proposed by BJ, 21-Jun-2021.) (Contributed by AV, 26-Jun-2021.)
Assertion
Ref Expression
zeo5 (𝑁 ∈ ℤ → (2 ∥ 𝑁 ∨ 2 ∥ (𝑁 + 1)))

Proof of Theorem zeo5
StepHypRef Expression
1 zeo3 16258 . 2 (𝑁 ∈ ℤ → (2 ∥ 𝑁 ∨ ¬ 2 ∥ 𝑁))
2 oddp1even 16265 . . . 4 (𝑁 ∈ ℤ → (¬ 2 ∥ 𝑁 ↔ 2 ∥ (𝑁 + 1)))
32bicomd 223 . . 3 (𝑁 ∈ ℤ → (2 ∥ (𝑁 + 1) ↔ ¬ 2 ∥ 𝑁))
43orbi2d 915 . 2 (𝑁 ∈ ℤ → ((2 ∥ 𝑁 ∨ 2 ∥ (𝑁 + 1)) ↔ (2 ∥ 𝑁 ∨ ¬ 2 ∥ 𝑁)))
51, 4mpbird 257 1 (𝑁 ∈ ℤ → (2 ∥ 𝑁 ∨ 2 ∥ (𝑁 + 1)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wo 847  wcel 2113   class class class wbr 5095  (class class class)co 7355  1c1 11017   + caddc 11019  2c2 12190  cz 12478  cdvds 16173
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7677  ax-resscn 11073  ax-1cn 11074  ax-icn 11075  ax-addcl 11076  ax-addrcl 11077  ax-mulcl 11078  ax-mulrcl 11079  ax-mulcom 11080  ax-addass 11081  ax-mulass 11082  ax-distr 11083  ax-i2m1 11084  ax-1ne0 11085  ax-1rid 11086  ax-rnegex 11087  ax-rrecex 11088  ax-cnre 11089  ax-pre-lttri 11090  ax-pre-lttrn 11091  ax-pre-ltadd 11092  ax-pre-mulgt0 11093
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2883  df-ne 2931  df-nel 3035  df-ral 3050  df-rex 3059  df-rmo 3348  df-reu 3349  df-rab 3398  df-v 3440  df-sbc 3739  df-csb 3848  df-dif 3902  df-un 3904  df-in 3906  df-ss 3916  df-pss 3919  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-iun 4945  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5516  df-eprel 5521  df-po 5529  df-so 5530  df-fr 5574  df-we 5576  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-pred 6256  df-ord 6317  df-on 6318  df-lim 6319  df-suc 6320  df-iota 6445  df-fun 6491  df-fn 6492  df-f 6493  df-f1 6494  df-fo 6495  df-f1o 6496  df-fv 6497  df-riota 7312  df-ov 7358  df-oprab 7359  df-mpo 7360  df-om 7806  df-2nd 7931  df-frecs 8220  df-wrecs 8251  df-recs 8300  df-rdg 8338  df-er 8631  df-en 8879  df-dom 8880  df-sdom 8881  df-pnf 11158  df-mnf 11159  df-xr 11160  df-ltxr 11161  df-le 11162  df-sub 11356  df-neg 11357  df-div 11785  df-nn 12136  df-2 12198  df-n0 12392  df-z 12479  df-dvds 16174
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator