MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  evenelz Structured version   Visualization version   GIF version

Theorem evenelz 15774
Description: An even number is an integer. This follows immediately from the reverse closure of the divides relation, see dvdszrcl 15697. (Contributed by AV, 22-Jun-2021.)
Assertion
Ref Expression
evenelz (2 ∥ 𝑁𝑁 ∈ ℤ)

Proof of Theorem evenelz
StepHypRef Expression
1 dvdszrcl 15697 . 2 (2 ∥ 𝑁 → (2 ∈ ℤ ∧ 𝑁 ∈ ℤ))
21simprd 499 1 (2 ∥ 𝑁𝑁 ∈ ℤ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2113   class class class wbr 5027  2c2 11764  cz 12055  cdvds 15692
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1916  ax-6 1974  ax-7 2019  ax-8 2115  ax-9 2123  ax-ext 2710  ax-sep 5164  ax-nul 5171  ax-pr 5293
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1787  df-sb 2074  df-clab 2717  df-cleq 2730  df-clel 2811  df-ral 3058  df-rex 3059  df-v 3399  df-dif 3844  df-un 3846  df-in 3848  df-ss 3858  df-nul 4210  df-if 4412  df-sn 4514  df-pr 4516  df-op 4520  df-br 5028  df-opab 5090  df-xp 5525  df-dvds 15693
This theorem is referenced by:  even2n  15780
  Copyright terms: Public domain W3C validator