MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  evenelz Structured version   Visualization version   GIF version

Theorem evenelz 16152
Description: An even number is an integer. This follows immediately from the reverse closure of the divides relation, see dvdszrcl 16075. (Contributed by AV, 22-Jun-2021.)
Assertion
Ref Expression
evenelz (2 ∥ 𝑁𝑁 ∈ ℤ)

Proof of Theorem evenelz
StepHypRef Expression
1 dvdszrcl 16075 . 2 (2 ∥ 𝑁 → (2 ∈ ℤ ∧ 𝑁 ∈ ℤ))
21simprd 496 1 (2 ∥ 𝑁𝑁 ∈ ℤ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2106   class class class wbr 5103  2c2 12141  cz 12432  cdvds 16070
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2708  ax-sep 5254  ax-nul 5261  ax-pr 5382
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-sb 2068  df-clab 2715  df-cleq 2729  df-clel 2815  df-ral 3063  df-rex 3072  df-rab 3406  df-v 3445  df-dif 3911  df-un 3913  df-in 3915  df-ss 3925  df-nul 4281  df-if 4485  df-sn 4585  df-pr 4587  df-op 4591  df-br 5104  df-opab 5166  df-xp 5636  df-dvds 16071
This theorem is referenced by:  even2n  16158
  Copyright terms: Public domain W3C validator