MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  evenelz Structured version   Visualization version   GIF version

Theorem evenelz 16247
Description: An even number is an integer. This follows immediately from the reverse closure of the divides relation, see dvdszrcl 16168. (Contributed by AV, 22-Jun-2021.)
Assertion
Ref Expression
evenelz (2 ∥ 𝑁𝑁 ∈ ℤ)

Proof of Theorem evenelz
StepHypRef Expression
1 dvdszrcl 16168 . 2 (2 ∥ 𝑁 → (2 ∈ ℤ ∧ 𝑁 ∈ ℤ))
21simprd 495 1 (2 ∥ 𝑁𝑁 ∈ ℤ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2111   class class class wbr 5089  2c2 12180  cz 12468  cdvds 16163
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pr 5368
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3900  df-un 3902  df-ss 3914  df-nul 4281  df-if 4473  df-sn 4574  df-pr 4576  df-op 4580  df-br 5090  df-opab 5152  df-xp 5620  df-dvds 16164
This theorem is referenced by:  even2n  16253
  Copyright terms: Public domain W3C validator