Proof of Theorem zeo
| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | elz 12617 | . . 3
⊢ (𝑁 ∈ ℤ ↔ (𝑁 ∈ ℝ ∧ (𝑁 = 0 ∨ 𝑁 ∈ ℕ ∨ -𝑁 ∈ ℕ))) | 
| 2 |  | oveq1 7439 | . . . . . . 7
⊢ (𝑁 = 0 → (𝑁 / 2) = (0 / 2)) | 
| 3 |  | 2cn 12342 | . . . . . . . . 9
⊢ 2 ∈
ℂ | 
| 4 |  | 2ne0 12371 | . . . . . . . . 9
⊢ 2 ≠
0 | 
| 5 | 3, 4 | div0i 12002 | . . . . . . . 8
⊢ (0 / 2) =
0 | 
| 6 |  | 0z 12626 | . . . . . . . 8
⊢ 0 ∈
ℤ | 
| 7 | 5, 6 | eqeltri 2836 | . . . . . . 7
⊢ (0 / 2)
∈ ℤ | 
| 8 | 2, 7 | eqeltrdi 2848 | . . . . . 6
⊢ (𝑁 = 0 → (𝑁 / 2) ∈ ℤ) | 
| 9 | 8 | pm2.24d 151 | . . . . 5
⊢ (𝑁 = 0 → (¬ (𝑁 / 2) ∈ ℤ →
((𝑁 + 1) / 2) ∈
ℤ)) | 
| 10 | 9 | adantl 481 | . . . 4
⊢ ((𝑁 ∈ ℝ ∧ 𝑁 = 0) → (¬ (𝑁 / 2) ∈ ℤ →
((𝑁 + 1) / 2) ∈
ℤ)) | 
| 11 |  | nnz 12636 | . . . . . . 7
⊢ ((𝑁 / 2) ∈ ℕ →
(𝑁 / 2) ∈
ℤ) | 
| 12 | 11 | con3i 154 | . . . . . 6
⊢ (¬
(𝑁 / 2) ∈ ℤ
→ ¬ (𝑁 / 2) ∈
ℕ) | 
| 13 |  | nneo 12704 | . . . . . . . 8
⊢ (𝑁 ∈ ℕ → ((𝑁 / 2) ∈ ℕ ↔
¬ ((𝑁 + 1) / 2) ∈
ℕ)) | 
| 14 | 13 | biimprd 248 | . . . . . . 7
⊢ (𝑁 ∈ ℕ → (¬
((𝑁 + 1) / 2) ∈
ℕ → (𝑁 / 2)
∈ ℕ)) | 
| 15 | 14 | con1d 145 | . . . . . 6
⊢ (𝑁 ∈ ℕ → (¬
(𝑁 / 2) ∈ ℕ
→ ((𝑁 + 1) / 2) ∈
ℕ)) | 
| 16 |  | nnz 12636 | . . . . . 6
⊢ (((𝑁 + 1) / 2) ∈ ℕ →
((𝑁 + 1) / 2) ∈
ℤ) | 
| 17 | 12, 15, 16 | syl56 36 | . . . . 5
⊢ (𝑁 ∈ ℕ → (¬
(𝑁 / 2) ∈ ℤ
→ ((𝑁 + 1) / 2) ∈
ℤ)) | 
| 18 | 17 | adantl 481 | . . . 4
⊢ ((𝑁 ∈ ℝ ∧ 𝑁 ∈ ℕ) → (¬
(𝑁 / 2) ∈ ℤ
→ ((𝑁 + 1) / 2) ∈
ℤ)) | 
| 19 |  | recn 11246 | . . . . . . . . . . 11
⊢ (𝑁 ∈ ℝ → 𝑁 ∈
ℂ) | 
| 20 |  | divneg 11960 | . . . . . . . . . . . 12
⊢ ((𝑁 ∈ ℂ ∧ 2 ∈
ℂ ∧ 2 ≠ 0) → -(𝑁 / 2) = (-𝑁 / 2)) | 
| 21 | 3, 4, 20 | mp3an23 1454 | . . . . . . . . . . 11
⊢ (𝑁 ∈ ℂ → -(𝑁 / 2) = (-𝑁 / 2)) | 
| 22 | 19, 21 | syl 17 | . . . . . . . . . 10
⊢ (𝑁 ∈ ℝ → -(𝑁 / 2) = (-𝑁 / 2)) | 
| 23 | 22 | eleq1d 2825 | . . . . . . . . 9
⊢ (𝑁 ∈ ℝ → (-(𝑁 / 2) ∈ ℕ ↔
(-𝑁 / 2) ∈
ℕ)) | 
| 24 |  | nnnegz 12618 | . . . . . . . . 9
⊢ (-(𝑁 / 2) ∈ ℕ →
--(𝑁 / 2) ∈
ℤ) | 
| 25 | 23, 24 | biimtrrdi 254 | . . . . . . . 8
⊢ (𝑁 ∈ ℝ → ((-𝑁 / 2) ∈ ℕ →
--(𝑁 / 2) ∈
ℤ)) | 
| 26 | 19 | halfcld 12513 | . . . . . . . . . 10
⊢ (𝑁 ∈ ℝ → (𝑁 / 2) ∈
ℂ) | 
| 27 | 26 | negnegd 11612 | . . . . . . . . 9
⊢ (𝑁 ∈ ℝ → --(𝑁 / 2) = (𝑁 / 2)) | 
| 28 | 27 | eleq1d 2825 | . . . . . . . 8
⊢ (𝑁 ∈ ℝ → (--(𝑁 / 2) ∈ ℤ ↔
(𝑁 / 2) ∈
ℤ)) | 
| 29 | 25, 28 | sylibd 239 | . . . . . . 7
⊢ (𝑁 ∈ ℝ → ((-𝑁 / 2) ∈ ℕ →
(𝑁 / 2) ∈
ℤ)) | 
| 30 | 29 | adantr 480 | . . . . . 6
⊢ ((𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ) → ((-𝑁 / 2) ∈ ℕ →
(𝑁 / 2) ∈
ℤ)) | 
| 31 | 30 | con3d 152 | . . . . 5
⊢ ((𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ) → (¬
(𝑁 / 2) ∈ ℤ
→ ¬ (-𝑁 / 2)
∈ ℕ)) | 
| 32 |  | nneo 12704 | . . . . . . . 8
⊢ (-𝑁 ∈ ℕ → ((-𝑁 / 2) ∈ ℕ ↔
¬ ((-𝑁 + 1) / 2) ∈
ℕ)) | 
| 33 | 32 | biimprd 248 | . . . . . . 7
⊢ (-𝑁 ∈ ℕ → (¬
((-𝑁 + 1) / 2) ∈
ℕ → (-𝑁 / 2)
∈ ℕ)) | 
| 34 | 33 | con1d 145 | . . . . . 6
⊢ (-𝑁 ∈ ℕ → (¬
(-𝑁 / 2) ∈ ℕ
→ ((-𝑁 + 1) / 2)
∈ ℕ)) | 
| 35 |  | nnz 12636 | . . . . . . 7
⊢ (((-𝑁 + 1) / 2) ∈ ℕ →
((-𝑁 + 1) / 2) ∈
ℤ) | 
| 36 |  | peano2zm 12662 | . . . . . . . . . 10
⊢ (((-𝑁 + 1) / 2) ∈ ℤ →
(((-𝑁 + 1) / 2) − 1)
∈ ℤ) | 
| 37 |  | ax-1cn 11214 | . . . . . . . . . . . . . . . . . . 19
⊢ 1 ∈
ℂ | 
| 38 | 37, 3 | negsubdi2i 11596 | . . . . . . . . . . . . . . . . . 18
⊢ -(1
− 2) = (2 − 1) | 
| 39 |  | 2m1e1 12393 | . . . . . . . . . . . . . . . . . 18
⊢ (2
− 1) = 1 | 
| 40 | 38, 39 | eqtr2i 2765 | . . . . . . . . . . . . . . . . 17
⊢ 1 = -(1
− 2) | 
| 41 | 37, 3 | subcli 11586 | . . . . . . . . . . . . . . . . . 18
⊢ (1
− 2) ∈ ℂ | 
| 42 | 37, 41 | negcon2i 11593 | . . . . . . . . . . . . . . . . 17
⊢ (1 = -(1
− 2) ↔ (1 − 2) = -1) | 
| 43 | 40, 42 | mpbi 230 | . . . . . . . . . . . . . . . 16
⊢ (1
− 2) = -1 | 
| 44 | 43 | oveq2i 7443 | . . . . . . . . . . . . . . 15
⊢ (-𝑁 + (1 − 2)) = (-𝑁 + -1) | 
| 45 |  | negcl 11509 | . . . . . . . . . . . . . . . 16
⊢ (𝑁 ∈ ℂ → -𝑁 ∈
ℂ) | 
| 46 |  | addsubass 11519 | . . . . . . . . . . . . . . . . 17
⊢ ((-𝑁 ∈ ℂ ∧ 1 ∈
ℂ ∧ 2 ∈ ℂ) → ((-𝑁 + 1) − 2) = (-𝑁 + (1 − 2))) | 
| 47 | 37, 3, 46 | mp3an23 1454 | . . . . . . . . . . . . . . . 16
⊢ (-𝑁 ∈ ℂ → ((-𝑁 + 1) − 2) = (-𝑁 + (1 −
2))) | 
| 48 | 45, 47 | syl 17 | . . . . . . . . . . . . . . 15
⊢ (𝑁 ∈ ℂ → ((-𝑁 + 1) − 2) = (-𝑁 + (1 −
2))) | 
| 49 |  | negdi 11567 | . . . . . . . . . . . . . . . 16
⊢ ((𝑁 ∈ ℂ ∧ 1 ∈
ℂ) → -(𝑁 + 1) =
(-𝑁 + -1)) | 
| 50 | 37, 49 | mpan2 691 | . . . . . . . . . . . . . . 15
⊢ (𝑁 ∈ ℂ → -(𝑁 + 1) = (-𝑁 + -1)) | 
| 51 | 44, 48, 50 | 3eqtr4a 2802 | . . . . . . . . . . . . . 14
⊢ (𝑁 ∈ ℂ → ((-𝑁 + 1) − 2) = -(𝑁 + 1)) | 
| 52 | 51 | oveq1d 7447 | . . . . . . . . . . . . 13
⊢ (𝑁 ∈ ℂ → (((-𝑁 + 1) − 2) / 2) = (-(𝑁 + 1) / 2)) | 
| 53 |  | 2div2e1 12408 | . . . . . . . . . . . . . . . 16
⊢ (2 / 2) =
1 | 
| 54 | 53 | eqcomi 2745 | . . . . . . . . . . . . . . 15
⊢ 1 = (2 /
2) | 
| 55 | 54 | oveq2i 7443 | . . . . . . . . . . . . . 14
⊢ (((-𝑁 + 1) / 2) − 1) =
(((-𝑁 + 1) / 2) − (2
/ 2)) | 
| 56 |  | peano2cn 11434 | . . . . . . . . . . . . . . . 16
⊢ (-𝑁 ∈ ℂ → (-𝑁 + 1) ∈
ℂ) | 
| 57 | 45, 56 | syl 17 | . . . . . . . . . . . . . . 15
⊢ (𝑁 ∈ ℂ → (-𝑁 + 1) ∈
ℂ) | 
| 58 |  | 2cnne0 12477 | . . . . . . . . . . . . . . . 16
⊢ (2 ∈
ℂ ∧ 2 ≠ 0) | 
| 59 |  | divsubdir 11962 | . . . . . . . . . . . . . . . 16
⊢ (((-𝑁 + 1) ∈ ℂ ∧ 2
∈ ℂ ∧ (2 ∈ ℂ ∧ 2 ≠ 0)) → (((-𝑁 + 1) − 2) / 2) =
(((-𝑁 + 1) / 2) − (2
/ 2))) | 
| 60 | 3, 58, 59 | mp3an23 1454 | . . . . . . . . . . . . . . 15
⊢ ((-𝑁 + 1) ∈ ℂ →
(((-𝑁 + 1) − 2) / 2)
= (((-𝑁 + 1) / 2) −
(2 / 2))) | 
| 61 | 57, 60 | syl 17 | . . . . . . . . . . . . . 14
⊢ (𝑁 ∈ ℂ → (((-𝑁 + 1) − 2) / 2) =
(((-𝑁 + 1) / 2) − (2
/ 2))) | 
| 62 | 55, 61 | eqtr4id 2795 | . . . . . . . . . . . . 13
⊢ (𝑁 ∈ ℂ → (((-𝑁 + 1) / 2) − 1) =
(((-𝑁 + 1) − 2) /
2)) | 
| 63 |  | peano2cn 11434 | . . . . . . . . . . . . . 14
⊢ (𝑁 ∈ ℂ → (𝑁 + 1) ∈
ℂ) | 
| 64 |  | divneg 11960 | . . . . . . . . . . . . . . 15
⊢ (((𝑁 + 1) ∈ ℂ ∧ 2
∈ ℂ ∧ 2 ≠ 0) → -((𝑁 + 1) / 2) = (-(𝑁 + 1) / 2)) | 
| 65 | 3, 4, 64 | mp3an23 1454 | . . . . . . . . . . . . . 14
⊢ ((𝑁 + 1) ∈ ℂ →
-((𝑁 + 1) / 2) = (-(𝑁 + 1) / 2)) | 
| 66 | 63, 65 | syl 17 | . . . . . . . . . . . . 13
⊢ (𝑁 ∈ ℂ → -((𝑁 + 1) / 2) = (-(𝑁 + 1) / 2)) | 
| 67 | 52, 62, 66 | 3eqtr4d 2786 | . . . . . . . . . . . 12
⊢ (𝑁 ∈ ℂ → (((-𝑁 + 1) / 2) − 1) = -((𝑁 + 1) / 2)) | 
| 68 | 19, 67 | syl 17 | . . . . . . . . . . 11
⊢ (𝑁 ∈ ℝ → (((-𝑁 + 1) / 2) − 1) = -((𝑁 + 1) / 2)) | 
| 69 | 68 | eleq1d 2825 | . . . . . . . . . 10
⊢ (𝑁 ∈ ℝ →
((((-𝑁 + 1) / 2) − 1)
∈ ℤ ↔ -((𝑁
+ 1) / 2) ∈ ℤ)) | 
| 70 | 36, 69 | imbitrid 244 | . . . . . . . . 9
⊢ (𝑁 ∈ ℝ → (((-𝑁 + 1) / 2) ∈ ℤ →
-((𝑁 + 1) / 2) ∈
ℤ)) | 
| 71 |  | znegcl 12654 | . . . . . . . . 9
⊢ (-((𝑁 + 1) / 2) ∈ ℤ →
--((𝑁 + 1) / 2) ∈
ℤ) | 
| 72 | 70, 71 | syl6 35 | . . . . . . . 8
⊢ (𝑁 ∈ ℝ → (((-𝑁 + 1) / 2) ∈ ℤ →
--((𝑁 + 1) / 2) ∈
ℤ)) | 
| 73 |  | peano2re 11435 | . . . . . . . . . . . 12
⊢ (𝑁 ∈ ℝ → (𝑁 + 1) ∈
ℝ) | 
| 74 | 73 | recnd 11290 | . . . . . . . . . . 11
⊢ (𝑁 ∈ ℝ → (𝑁 + 1) ∈
ℂ) | 
| 75 | 74 | halfcld 12513 | . . . . . . . . . 10
⊢ (𝑁 ∈ ℝ → ((𝑁 + 1) / 2) ∈
ℂ) | 
| 76 | 75 | negnegd 11612 | . . . . . . . . 9
⊢ (𝑁 ∈ ℝ → --((𝑁 + 1) / 2) = ((𝑁 + 1) / 2)) | 
| 77 | 76 | eleq1d 2825 | . . . . . . . 8
⊢ (𝑁 ∈ ℝ →
(--((𝑁 + 1) / 2) ∈
ℤ ↔ ((𝑁 + 1) /
2) ∈ ℤ)) | 
| 78 | 72, 77 | sylibd 239 | . . . . . . 7
⊢ (𝑁 ∈ ℝ → (((-𝑁 + 1) / 2) ∈ ℤ →
((𝑁 + 1) / 2) ∈
ℤ)) | 
| 79 | 35, 78 | syl5 34 | . . . . . 6
⊢ (𝑁 ∈ ℝ → (((-𝑁 + 1) / 2) ∈ ℕ →
((𝑁 + 1) / 2) ∈
ℤ)) | 
| 80 | 34, 79 | sylan9r 508 | . . . . 5
⊢ ((𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ) → (¬
(-𝑁 / 2) ∈ ℕ
→ ((𝑁 + 1) / 2) ∈
ℤ)) | 
| 81 | 31, 80 | syld 47 | . . . 4
⊢ ((𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ) → (¬
(𝑁 / 2) ∈ ℤ
→ ((𝑁 + 1) / 2) ∈
ℤ)) | 
| 82 | 10, 18, 81 | 3jaodan 1432 | . . 3
⊢ ((𝑁 ∈ ℝ ∧ (𝑁 = 0 ∨ 𝑁 ∈ ℕ ∨ -𝑁 ∈ ℕ)) → (¬ (𝑁 / 2) ∈ ℤ →
((𝑁 + 1) / 2) ∈
ℤ)) | 
| 83 | 1, 82 | sylbi 217 | . 2
⊢ (𝑁 ∈ ℤ → (¬
(𝑁 / 2) ∈ ℤ
→ ((𝑁 + 1) / 2) ∈
ℤ)) | 
| 84 | 83 | orrd 863 | 1
⊢ (𝑁 ∈ ℤ → ((𝑁 / 2) ∈ ℤ ∨
((𝑁 + 1) / 2) ∈
ℤ)) |