MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  zeo Structured version   Visualization version   GIF version

Theorem zeo 12684
Description: An integer is even or odd. (Contributed by NM, 1-Jan-2006.)
Assertion
Ref Expression
zeo (𝑁 ∈ ℤ → ((𝑁 / 2) ∈ ℤ ∨ ((𝑁 + 1) / 2) ∈ ℤ))

Proof of Theorem zeo
StepHypRef Expression
1 elz 12595 . . 3 (𝑁 ∈ ℤ ↔ (𝑁 ∈ ℝ ∧ (𝑁 = 0 ∨ 𝑁 ∈ ℕ ∨ -𝑁 ∈ ℕ)))
2 oveq1 7417 . . . . . . 7 (𝑁 = 0 → (𝑁 / 2) = (0 / 2))
3 2cn 12320 . . . . . . . . 9 2 ∈ ℂ
4 2ne0 12349 . . . . . . . . 9 2 ≠ 0
53, 4div0i 11980 . . . . . . . 8 (0 / 2) = 0
6 0z 12604 . . . . . . . 8 0 ∈ ℤ
75, 6eqeltri 2831 . . . . . . 7 (0 / 2) ∈ ℤ
82, 7eqeltrdi 2843 . . . . . 6 (𝑁 = 0 → (𝑁 / 2) ∈ ℤ)
98pm2.24d 151 . . . . 5 (𝑁 = 0 → (¬ (𝑁 / 2) ∈ ℤ → ((𝑁 + 1) / 2) ∈ ℤ))
109adantl 481 . . . 4 ((𝑁 ∈ ℝ ∧ 𝑁 = 0) → (¬ (𝑁 / 2) ∈ ℤ → ((𝑁 + 1) / 2) ∈ ℤ))
11 nnz 12614 . . . . . . 7 ((𝑁 / 2) ∈ ℕ → (𝑁 / 2) ∈ ℤ)
1211con3i 154 . . . . . 6 (¬ (𝑁 / 2) ∈ ℤ → ¬ (𝑁 / 2) ∈ ℕ)
13 nneo 12682 . . . . . . . 8 (𝑁 ∈ ℕ → ((𝑁 / 2) ∈ ℕ ↔ ¬ ((𝑁 + 1) / 2) ∈ ℕ))
1413biimprd 248 . . . . . . 7 (𝑁 ∈ ℕ → (¬ ((𝑁 + 1) / 2) ∈ ℕ → (𝑁 / 2) ∈ ℕ))
1514con1d 145 . . . . . 6 (𝑁 ∈ ℕ → (¬ (𝑁 / 2) ∈ ℕ → ((𝑁 + 1) / 2) ∈ ℕ))
16 nnz 12614 . . . . . 6 (((𝑁 + 1) / 2) ∈ ℕ → ((𝑁 + 1) / 2) ∈ ℤ)
1712, 15, 16syl56 36 . . . . 5 (𝑁 ∈ ℕ → (¬ (𝑁 / 2) ∈ ℤ → ((𝑁 + 1) / 2) ∈ ℤ))
1817adantl 481 . . . 4 ((𝑁 ∈ ℝ ∧ 𝑁 ∈ ℕ) → (¬ (𝑁 / 2) ∈ ℤ → ((𝑁 + 1) / 2) ∈ ℤ))
19 recn 11224 . . . . . . . . . . 11 (𝑁 ∈ ℝ → 𝑁 ∈ ℂ)
20 divneg 11938 . . . . . . . . . . . 12 ((𝑁 ∈ ℂ ∧ 2 ∈ ℂ ∧ 2 ≠ 0) → -(𝑁 / 2) = (-𝑁 / 2))
213, 4, 20mp3an23 1455 . . . . . . . . . . 11 (𝑁 ∈ ℂ → -(𝑁 / 2) = (-𝑁 / 2))
2219, 21syl 17 . . . . . . . . . 10 (𝑁 ∈ ℝ → -(𝑁 / 2) = (-𝑁 / 2))
2322eleq1d 2820 . . . . . . . . 9 (𝑁 ∈ ℝ → (-(𝑁 / 2) ∈ ℕ ↔ (-𝑁 / 2) ∈ ℕ))
24 nnnegz 12596 . . . . . . . . 9 (-(𝑁 / 2) ∈ ℕ → --(𝑁 / 2) ∈ ℤ)
2523, 24biimtrrdi 254 . . . . . . . 8 (𝑁 ∈ ℝ → ((-𝑁 / 2) ∈ ℕ → --(𝑁 / 2) ∈ ℤ))
2619halfcld 12491 . . . . . . . . . 10 (𝑁 ∈ ℝ → (𝑁 / 2) ∈ ℂ)
2726negnegd 11590 . . . . . . . . 9 (𝑁 ∈ ℝ → --(𝑁 / 2) = (𝑁 / 2))
2827eleq1d 2820 . . . . . . . 8 (𝑁 ∈ ℝ → (--(𝑁 / 2) ∈ ℤ ↔ (𝑁 / 2) ∈ ℤ))
2925, 28sylibd 239 . . . . . . 7 (𝑁 ∈ ℝ → ((-𝑁 / 2) ∈ ℕ → (𝑁 / 2) ∈ ℤ))
3029adantr 480 . . . . . 6 ((𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ) → ((-𝑁 / 2) ∈ ℕ → (𝑁 / 2) ∈ ℤ))
3130con3d 152 . . . . 5 ((𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ) → (¬ (𝑁 / 2) ∈ ℤ → ¬ (-𝑁 / 2) ∈ ℕ))
32 nneo 12682 . . . . . . . 8 (-𝑁 ∈ ℕ → ((-𝑁 / 2) ∈ ℕ ↔ ¬ ((-𝑁 + 1) / 2) ∈ ℕ))
3332biimprd 248 . . . . . . 7 (-𝑁 ∈ ℕ → (¬ ((-𝑁 + 1) / 2) ∈ ℕ → (-𝑁 / 2) ∈ ℕ))
3433con1d 145 . . . . . 6 (-𝑁 ∈ ℕ → (¬ (-𝑁 / 2) ∈ ℕ → ((-𝑁 + 1) / 2) ∈ ℕ))
35 nnz 12614 . . . . . . 7 (((-𝑁 + 1) / 2) ∈ ℕ → ((-𝑁 + 1) / 2) ∈ ℤ)
36 peano2zm 12640 . . . . . . . . . 10 (((-𝑁 + 1) / 2) ∈ ℤ → (((-𝑁 + 1) / 2) − 1) ∈ ℤ)
37 ax-1cn 11192 . . . . . . . . . . . . . . . . . . 19 1 ∈ ℂ
3837, 3negsubdi2i 11574 . . . . . . . . . . . . . . . . . 18 -(1 − 2) = (2 − 1)
39 2m1e1 12371 . . . . . . . . . . . . . . . . . 18 (2 − 1) = 1
4038, 39eqtr2i 2760 . . . . . . . . . . . . . . . . 17 1 = -(1 − 2)
4137, 3subcli 11564 . . . . . . . . . . . . . . . . . 18 (1 − 2) ∈ ℂ
4237, 41negcon2i 11571 . . . . . . . . . . . . . . . . 17 (1 = -(1 − 2) ↔ (1 − 2) = -1)
4340, 42mpbi 230 . . . . . . . . . . . . . . . 16 (1 − 2) = -1
4443oveq2i 7421 . . . . . . . . . . . . . . 15 (-𝑁 + (1 − 2)) = (-𝑁 + -1)
45 negcl 11487 . . . . . . . . . . . . . . . 16 (𝑁 ∈ ℂ → -𝑁 ∈ ℂ)
46 addsubass 11497 . . . . . . . . . . . . . . . . 17 ((-𝑁 ∈ ℂ ∧ 1 ∈ ℂ ∧ 2 ∈ ℂ) → ((-𝑁 + 1) − 2) = (-𝑁 + (1 − 2)))
4737, 3, 46mp3an23 1455 . . . . . . . . . . . . . . . 16 (-𝑁 ∈ ℂ → ((-𝑁 + 1) − 2) = (-𝑁 + (1 − 2)))
4845, 47syl 17 . . . . . . . . . . . . . . 15 (𝑁 ∈ ℂ → ((-𝑁 + 1) − 2) = (-𝑁 + (1 − 2)))
49 negdi 11545 . . . . . . . . . . . . . . . 16 ((𝑁 ∈ ℂ ∧ 1 ∈ ℂ) → -(𝑁 + 1) = (-𝑁 + -1))
5037, 49mpan2 691 . . . . . . . . . . . . . . 15 (𝑁 ∈ ℂ → -(𝑁 + 1) = (-𝑁 + -1))
5144, 48, 503eqtr4a 2797 . . . . . . . . . . . . . 14 (𝑁 ∈ ℂ → ((-𝑁 + 1) − 2) = -(𝑁 + 1))
5251oveq1d 7425 . . . . . . . . . . . . 13 (𝑁 ∈ ℂ → (((-𝑁 + 1) − 2) / 2) = (-(𝑁 + 1) / 2))
53 2div2e1 12386 . . . . . . . . . . . . . . . 16 (2 / 2) = 1
5453eqcomi 2745 . . . . . . . . . . . . . . 15 1 = (2 / 2)
5554oveq2i 7421 . . . . . . . . . . . . . 14 (((-𝑁 + 1) / 2) − 1) = (((-𝑁 + 1) / 2) − (2 / 2))
56 peano2cn 11412 . . . . . . . . . . . . . . . 16 (-𝑁 ∈ ℂ → (-𝑁 + 1) ∈ ℂ)
5745, 56syl 17 . . . . . . . . . . . . . . 15 (𝑁 ∈ ℂ → (-𝑁 + 1) ∈ ℂ)
58 2cnne0 12455 . . . . . . . . . . . . . . . 16 (2 ∈ ℂ ∧ 2 ≠ 0)
59 divsubdir 11940 . . . . . . . . . . . . . . . 16 (((-𝑁 + 1) ∈ ℂ ∧ 2 ∈ ℂ ∧ (2 ∈ ℂ ∧ 2 ≠ 0)) → (((-𝑁 + 1) − 2) / 2) = (((-𝑁 + 1) / 2) − (2 / 2)))
603, 58, 59mp3an23 1455 . . . . . . . . . . . . . . 15 ((-𝑁 + 1) ∈ ℂ → (((-𝑁 + 1) − 2) / 2) = (((-𝑁 + 1) / 2) − (2 / 2)))
6157, 60syl 17 . . . . . . . . . . . . . 14 (𝑁 ∈ ℂ → (((-𝑁 + 1) − 2) / 2) = (((-𝑁 + 1) / 2) − (2 / 2)))
6255, 61eqtr4id 2790 . . . . . . . . . . . . 13 (𝑁 ∈ ℂ → (((-𝑁 + 1) / 2) − 1) = (((-𝑁 + 1) − 2) / 2))
63 peano2cn 11412 . . . . . . . . . . . . . 14 (𝑁 ∈ ℂ → (𝑁 + 1) ∈ ℂ)
64 divneg 11938 . . . . . . . . . . . . . . 15 (((𝑁 + 1) ∈ ℂ ∧ 2 ∈ ℂ ∧ 2 ≠ 0) → -((𝑁 + 1) / 2) = (-(𝑁 + 1) / 2))
653, 4, 64mp3an23 1455 . . . . . . . . . . . . . 14 ((𝑁 + 1) ∈ ℂ → -((𝑁 + 1) / 2) = (-(𝑁 + 1) / 2))
6663, 65syl 17 . . . . . . . . . . . . 13 (𝑁 ∈ ℂ → -((𝑁 + 1) / 2) = (-(𝑁 + 1) / 2))
6752, 62, 663eqtr4d 2781 . . . . . . . . . . . 12 (𝑁 ∈ ℂ → (((-𝑁 + 1) / 2) − 1) = -((𝑁 + 1) / 2))
6819, 67syl 17 . . . . . . . . . . 11 (𝑁 ∈ ℝ → (((-𝑁 + 1) / 2) − 1) = -((𝑁 + 1) / 2))
6968eleq1d 2820 . . . . . . . . . 10 (𝑁 ∈ ℝ → ((((-𝑁 + 1) / 2) − 1) ∈ ℤ ↔ -((𝑁 + 1) / 2) ∈ ℤ))
7036, 69imbitrid 244 . . . . . . . . 9 (𝑁 ∈ ℝ → (((-𝑁 + 1) / 2) ∈ ℤ → -((𝑁 + 1) / 2) ∈ ℤ))
71 znegcl 12632 . . . . . . . . 9 (-((𝑁 + 1) / 2) ∈ ℤ → --((𝑁 + 1) / 2) ∈ ℤ)
7270, 71syl6 35 . . . . . . . 8 (𝑁 ∈ ℝ → (((-𝑁 + 1) / 2) ∈ ℤ → --((𝑁 + 1) / 2) ∈ ℤ))
73 peano2re 11413 . . . . . . . . . . . 12 (𝑁 ∈ ℝ → (𝑁 + 1) ∈ ℝ)
7473recnd 11268 . . . . . . . . . . 11 (𝑁 ∈ ℝ → (𝑁 + 1) ∈ ℂ)
7574halfcld 12491 . . . . . . . . . 10 (𝑁 ∈ ℝ → ((𝑁 + 1) / 2) ∈ ℂ)
7675negnegd 11590 . . . . . . . . 9 (𝑁 ∈ ℝ → --((𝑁 + 1) / 2) = ((𝑁 + 1) / 2))
7776eleq1d 2820 . . . . . . . 8 (𝑁 ∈ ℝ → (--((𝑁 + 1) / 2) ∈ ℤ ↔ ((𝑁 + 1) / 2) ∈ ℤ))
7872, 77sylibd 239 . . . . . . 7 (𝑁 ∈ ℝ → (((-𝑁 + 1) / 2) ∈ ℤ → ((𝑁 + 1) / 2) ∈ ℤ))
7935, 78syl5 34 . . . . . 6 (𝑁 ∈ ℝ → (((-𝑁 + 1) / 2) ∈ ℕ → ((𝑁 + 1) / 2) ∈ ℤ))
8034, 79sylan9r 508 . . . . 5 ((𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ) → (¬ (-𝑁 / 2) ∈ ℕ → ((𝑁 + 1) / 2) ∈ ℤ))
8131, 80syld 47 . . . 4 ((𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ) → (¬ (𝑁 / 2) ∈ ℤ → ((𝑁 + 1) / 2) ∈ ℤ))
8210, 18, 813jaodan 1433 . . 3 ((𝑁 ∈ ℝ ∧ (𝑁 = 0 ∨ 𝑁 ∈ ℕ ∨ -𝑁 ∈ ℕ)) → (¬ (𝑁 / 2) ∈ ℤ → ((𝑁 + 1) / 2) ∈ ℤ))
831, 82sylbi 217 . 2 (𝑁 ∈ ℤ → (¬ (𝑁 / 2) ∈ ℤ → ((𝑁 + 1) / 2) ∈ ℤ))
8483orrd 863 1 (𝑁 ∈ ℤ → ((𝑁 / 2) ∈ ℤ ∨ ((𝑁 + 1) / 2) ∈ ℤ))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  wo 847  w3o 1085   = wceq 1540  wcel 2109  wne 2933  (class class class)co 7410  cc 11132  cr 11133  0cc0 11134  1c1 11135   + caddc 11137  cmin 11471  -cneg 11472   / cdiv 11899  cn 12245  2c2 12300  cz 12593
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-resscn 11191  ax-1cn 11192  ax-icn 11193  ax-addcl 11194  ax-addrcl 11195  ax-mulcl 11196  ax-mulrcl 11197  ax-mulcom 11198  ax-addass 11199  ax-mulass 11200  ax-distr 11201  ax-i2m1 11202  ax-1ne0 11203  ax-1rid 11204  ax-rnegex 11205  ax-rrecex 11206  ax-cnre 11207  ax-pre-lttri 11208  ax-pre-lttrn 11209  ax-pre-ltadd 11210  ax-pre-mulgt0 11211
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-nel 3038  df-ral 3053  df-rex 3062  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-om 7867  df-2nd 7994  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-er 8724  df-en 8965  df-dom 8966  df-sdom 8967  df-pnf 11276  df-mnf 11277  df-xr 11278  df-ltxr 11279  df-le 11280  df-sub 11473  df-neg 11474  df-div 11900  df-nn 12246  df-2 12308  df-n0 12507  df-z 12594
This theorem is referenced by:  zeo2  12685  iseralt  15706  mod2eq1n2dvds  16371  mulsucdiv2z  16377  abssinper  26487  atantayl2  26905  basellem3  27050  chtub  27180  lgseisenlem1  27343  sumnnodd  45626  zeoALTV  47651  nn0eo  48475
  Copyright terms: Public domain W3C validator