MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  zeo Structured version   Visualization version   GIF version

Theorem zeo 12060
Description: An integer is even or odd. (Contributed by NM, 1-Jan-2006.)
Assertion
Ref Expression
zeo (𝑁 ∈ ℤ → ((𝑁 / 2) ∈ ℤ ∨ ((𝑁 + 1) / 2) ∈ ℤ))

Proof of Theorem zeo
StepHypRef Expression
1 elz 11975 . . 3 (𝑁 ∈ ℤ ↔ (𝑁 ∈ ℝ ∧ (𝑁 = 0 ∨ 𝑁 ∈ ℕ ∨ -𝑁 ∈ ℕ)))
2 oveq1 7158 . . . . . . 7 (𝑁 = 0 → (𝑁 / 2) = (0 / 2))
3 2cn 11704 . . . . . . . . 9 2 ∈ ℂ
4 2ne0 11733 . . . . . . . . 9 2 ≠ 0
53, 4div0i 11366 . . . . . . . 8 (0 / 2) = 0
6 0z 11984 . . . . . . . 8 0 ∈ ℤ
75, 6eqeltri 2913 . . . . . . 7 (0 / 2) ∈ ℤ
82, 7syl6eqel 2925 . . . . . 6 (𝑁 = 0 → (𝑁 / 2) ∈ ℤ)
98pm2.24d 154 . . . . 5 (𝑁 = 0 → (¬ (𝑁 / 2) ∈ ℤ → ((𝑁 + 1) / 2) ∈ ℤ))
109adantl 482 . . . 4 ((𝑁 ∈ ℝ ∧ 𝑁 = 0) → (¬ (𝑁 / 2) ∈ ℤ → ((𝑁 + 1) / 2) ∈ ℤ))
11 nnz 11996 . . . . . . 7 ((𝑁 / 2) ∈ ℕ → (𝑁 / 2) ∈ ℤ)
1211con3i 157 . . . . . 6 (¬ (𝑁 / 2) ∈ ℤ → ¬ (𝑁 / 2) ∈ ℕ)
13 nneo 12058 . . . . . . . 8 (𝑁 ∈ ℕ → ((𝑁 / 2) ∈ ℕ ↔ ¬ ((𝑁 + 1) / 2) ∈ ℕ))
1413biimprd 249 . . . . . . 7 (𝑁 ∈ ℕ → (¬ ((𝑁 + 1) / 2) ∈ ℕ → (𝑁 / 2) ∈ ℕ))
1514con1d 147 . . . . . 6 (𝑁 ∈ ℕ → (¬ (𝑁 / 2) ∈ ℕ → ((𝑁 + 1) / 2) ∈ ℕ))
16 nnz 11996 . . . . . 6 (((𝑁 + 1) / 2) ∈ ℕ → ((𝑁 + 1) / 2) ∈ ℤ)
1712, 15, 16syl56 36 . . . . 5 (𝑁 ∈ ℕ → (¬ (𝑁 / 2) ∈ ℤ → ((𝑁 + 1) / 2) ∈ ℤ))
1817adantl 482 . . . 4 ((𝑁 ∈ ℝ ∧ 𝑁 ∈ ℕ) → (¬ (𝑁 / 2) ∈ ℤ → ((𝑁 + 1) / 2) ∈ ℤ))
19 recn 10619 . . . . . . . . . . 11 (𝑁 ∈ ℝ → 𝑁 ∈ ℂ)
20 divneg 11324 . . . . . . . . . . . 12 ((𝑁 ∈ ℂ ∧ 2 ∈ ℂ ∧ 2 ≠ 0) → -(𝑁 / 2) = (-𝑁 / 2))
213, 4, 20mp3an23 1446 . . . . . . . . . . 11 (𝑁 ∈ ℂ → -(𝑁 / 2) = (-𝑁 / 2))
2219, 21syl 17 . . . . . . . . . 10 (𝑁 ∈ ℝ → -(𝑁 / 2) = (-𝑁 / 2))
2322eleq1d 2901 . . . . . . . . 9 (𝑁 ∈ ℝ → (-(𝑁 / 2) ∈ ℕ ↔ (-𝑁 / 2) ∈ ℕ))
24 nnnegz 11976 . . . . . . . . 9 (-(𝑁 / 2) ∈ ℕ → --(𝑁 / 2) ∈ ℤ)
2523, 24syl6bir 255 . . . . . . . 8 (𝑁 ∈ ℝ → ((-𝑁 / 2) ∈ ℕ → --(𝑁 / 2) ∈ ℤ))
2619halfcld 11874 . . . . . . . . . 10 (𝑁 ∈ ℝ → (𝑁 / 2) ∈ ℂ)
2726negnegd 10980 . . . . . . . . 9 (𝑁 ∈ ℝ → --(𝑁 / 2) = (𝑁 / 2))
2827eleq1d 2901 . . . . . . . 8 (𝑁 ∈ ℝ → (--(𝑁 / 2) ∈ ℤ ↔ (𝑁 / 2) ∈ ℤ))
2925, 28sylibd 240 . . . . . . 7 (𝑁 ∈ ℝ → ((-𝑁 / 2) ∈ ℕ → (𝑁 / 2) ∈ ℤ))
3029adantr 481 . . . . . 6 ((𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ) → ((-𝑁 / 2) ∈ ℕ → (𝑁 / 2) ∈ ℤ))
3130con3d 155 . . . . 5 ((𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ) → (¬ (𝑁 / 2) ∈ ℤ → ¬ (-𝑁 / 2) ∈ ℕ))
32 nneo 12058 . . . . . . . 8 (-𝑁 ∈ ℕ → ((-𝑁 / 2) ∈ ℕ ↔ ¬ ((-𝑁 + 1) / 2) ∈ ℕ))
3332biimprd 249 . . . . . . 7 (-𝑁 ∈ ℕ → (¬ ((-𝑁 + 1) / 2) ∈ ℕ → (-𝑁 / 2) ∈ ℕ))
3433con1d 147 . . . . . 6 (-𝑁 ∈ ℕ → (¬ (-𝑁 / 2) ∈ ℕ → ((-𝑁 + 1) / 2) ∈ ℕ))
35 nnz 11996 . . . . . . 7 (((-𝑁 + 1) / 2) ∈ ℕ → ((-𝑁 + 1) / 2) ∈ ℤ)
36 peano2zm 12017 . . . . . . . . . 10 (((-𝑁 + 1) / 2) ∈ ℤ → (((-𝑁 + 1) / 2) − 1) ∈ ℤ)
37 ax-1cn 10587 . . . . . . . . . . . . . . . . . . 19 1 ∈ ℂ
3837, 3negsubdi2i 10964 . . . . . . . . . . . . . . . . . 18 -(1 − 2) = (2 − 1)
39 2m1e1 11755 . . . . . . . . . . . . . . . . . 18 (2 − 1) = 1
4038, 39eqtr2i 2849 . . . . . . . . . . . . . . . . 17 1 = -(1 − 2)
4137, 3subcli 10954 . . . . . . . . . . . . . . . . . 18 (1 − 2) ∈ ℂ
4237, 41negcon2i 10961 . . . . . . . . . . . . . . . . 17 (1 = -(1 − 2) ↔ (1 − 2) = -1)
4340, 42mpbi 231 . . . . . . . . . . . . . . . 16 (1 − 2) = -1
4443oveq2i 7162 . . . . . . . . . . . . . . 15 (-𝑁 + (1 − 2)) = (-𝑁 + -1)
45 negcl 10878 . . . . . . . . . . . . . . . 16 (𝑁 ∈ ℂ → -𝑁 ∈ ℂ)
46 addsubass 10888 . . . . . . . . . . . . . . . . 17 ((-𝑁 ∈ ℂ ∧ 1 ∈ ℂ ∧ 2 ∈ ℂ) → ((-𝑁 + 1) − 2) = (-𝑁 + (1 − 2)))
4737, 3, 46mp3an23 1446 . . . . . . . . . . . . . . . 16 (-𝑁 ∈ ℂ → ((-𝑁 + 1) − 2) = (-𝑁 + (1 − 2)))
4845, 47syl 17 . . . . . . . . . . . . . . 15 (𝑁 ∈ ℂ → ((-𝑁 + 1) − 2) = (-𝑁 + (1 − 2)))
49 negdi 10935 . . . . . . . . . . . . . . . 16 ((𝑁 ∈ ℂ ∧ 1 ∈ ℂ) → -(𝑁 + 1) = (-𝑁 + -1))
5037, 49mpan2 687 . . . . . . . . . . . . . . 15 (𝑁 ∈ ℂ → -(𝑁 + 1) = (-𝑁 + -1))
5144, 48, 503eqtr4a 2886 . . . . . . . . . . . . . 14 (𝑁 ∈ ℂ → ((-𝑁 + 1) − 2) = -(𝑁 + 1))
5251oveq1d 7166 . . . . . . . . . . . . 13 (𝑁 ∈ ℂ → (((-𝑁 + 1) − 2) / 2) = (-(𝑁 + 1) / 2))
53 peano2cn 10804 . . . . . . . . . . . . . . . 16 (-𝑁 ∈ ℂ → (-𝑁 + 1) ∈ ℂ)
5445, 53syl 17 . . . . . . . . . . . . . . 15 (𝑁 ∈ ℂ → (-𝑁 + 1) ∈ ℂ)
55 2cnne0 11839 . . . . . . . . . . . . . . . 16 (2 ∈ ℂ ∧ 2 ≠ 0)
56 divsubdir 11326 . . . . . . . . . . . . . . . 16 (((-𝑁 + 1) ∈ ℂ ∧ 2 ∈ ℂ ∧ (2 ∈ ℂ ∧ 2 ≠ 0)) → (((-𝑁 + 1) − 2) / 2) = (((-𝑁 + 1) / 2) − (2 / 2)))
573, 55, 56mp3an23 1446 . . . . . . . . . . . . . . 15 ((-𝑁 + 1) ∈ ℂ → (((-𝑁 + 1) − 2) / 2) = (((-𝑁 + 1) / 2) − (2 / 2)))
5854, 57syl 17 . . . . . . . . . . . . . 14 (𝑁 ∈ ℂ → (((-𝑁 + 1) − 2) / 2) = (((-𝑁 + 1) / 2) − (2 / 2)))
59 2div2e1 11770 . . . . . . . . . . . . . . . 16 (2 / 2) = 1
6059eqcomi 2834 . . . . . . . . . . . . . . 15 1 = (2 / 2)
6160oveq2i 7162 . . . . . . . . . . . . . 14 (((-𝑁 + 1) / 2) − 1) = (((-𝑁 + 1) / 2) − (2 / 2))
6258, 61syl6reqr 2879 . . . . . . . . . . . . 13 (𝑁 ∈ ℂ → (((-𝑁 + 1) / 2) − 1) = (((-𝑁 + 1) − 2) / 2))
63 peano2cn 10804 . . . . . . . . . . . . . 14 (𝑁 ∈ ℂ → (𝑁 + 1) ∈ ℂ)
64 divneg 11324 . . . . . . . . . . . . . . 15 (((𝑁 + 1) ∈ ℂ ∧ 2 ∈ ℂ ∧ 2 ≠ 0) → -((𝑁 + 1) / 2) = (-(𝑁 + 1) / 2))
653, 4, 64mp3an23 1446 . . . . . . . . . . . . . 14 ((𝑁 + 1) ∈ ℂ → -((𝑁 + 1) / 2) = (-(𝑁 + 1) / 2))
6663, 65syl 17 . . . . . . . . . . . . 13 (𝑁 ∈ ℂ → -((𝑁 + 1) / 2) = (-(𝑁 + 1) / 2))
6752, 62, 663eqtr4d 2870 . . . . . . . . . . . 12 (𝑁 ∈ ℂ → (((-𝑁 + 1) / 2) − 1) = -((𝑁 + 1) / 2))
6819, 67syl 17 . . . . . . . . . . 11 (𝑁 ∈ ℝ → (((-𝑁 + 1) / 2) − 1) = -((𝑁 + 1) / 2))
6968eleq1d 2901 . . . . . . . . . 10 (𝑁 ∈ ℝ → ((((-𝑁 + 1) / 2) − 1) ∈ ℤ ↔ -((𝑁 + 1) / 2) ∈ ℤ))
7036, 69syl5ib 245 . . . . . . . . 9 (𝑁 ∈ ℝ → (((-𝑁 + 1) / 2) ∈ ℤ → -((𝑁 + 1) / 2) ∈ ℤ))
71 znegcl 12009 . . . . . . . . 9 (-((𝑁 + 1) / 2) ∈ ℤ → --((𝑁 + 1) / 2) ∈ ℤ)
7270, 71syl6 35 . . . . . . . 8 (𝑁 ∈ ℝ → (((-𝑁 + 1) / 2) ∈ ℤ → --((𝑁 + 1) / 2) ∈ ℤ))
73 peano2re 10805 . . . . . . . . . . . 12 (𝑁 ∈ ℝ → (𝑁 + 1) ∈ ℝ)
7473recnd 10661 . . . . . . . . . . 11 (𝑁 ∈ ℝ → (𝑁 + 1) ∈ ℂ)
7574halfcld 11874 . . . . . . . . . 10 (𝑁 ∈ ℝ → ((𝑁 + 1) / 2) ∈ ℂ)
7675negnegd 10980 . . . . . . . . 9 (𝑁 ∈ ℝ → --((𝑁 + 1) / 2) = ((𝑁 + 1) / 2))
7776eleq1d 2901 . . . . . . . 8 (𝑁 ∈ ℝ → (--((𝑁 + 1) / 2) ∈ ℤ ↔ ((𝑁 + 1) / 2) ∈ ℤ))
7872, 77sylibd 240 . . . . . . 7 (𝑁 ∈ ℝ → (((-𝑁 + 1) / 2) ∈ ℤ → ((𝑁 + 1) / 2) ∈ ℤ))
7935, 78syl5 34 . . . . . 6 (𝑁 ∈ ℝ → (((-𝑁 + 1) / 2) ∈ ℕ → ((𝑁 + 1) / 2) ∈ ℤ))
8034, 79sylan9r 509 . . . . 5 ((𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ) → (¬ (-𝑁 / 2) ∈ ℕ → ((𝑁 + 1) / 2) ∈ ℤ))
8131, 80syld 47 . . . 4 ((𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ) → (¬ (𝑁 / 2) ∈ ℤ → ((𝑁 + 1) / 2) ∈ ℤ))
8210, 18, 813jaodan 1424 . . 3 ((𝑁 ∈ ℝ ∧ (𝑁 = 0 ∨ 𝑁 ∈ ℕ ∨ -𝑁 ∈ ℕ)) → (¬ (𝑁 / 2) ∈ ℤ → ((𝑁 + 1) / 2) ∈ ℤ))
831, 82sylbi 218 . 2 (𝑁 ∈ ℤ → (¬ (𝑁 / 2) ∈ ℤ → ((𝑁 + 1) / 2) ∈ ℤ))
8483orrd 859 1 (𝑁 ∈ ℤ → ((𝑁 / 2) ∈ ℤ ∨ ((𝑁 + 1) / 2) ∈ ℤ))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 396  wo 843  w3o 1080   = wceq 1530  wcel 2107  wne 3020  (class class class)co 7151  cc 10527  cr 10528  0cc0 10529  1c1 10530   + caddc 10532  cmin 10862  -cneg 10863   / cdiv 11289  cn 11630  2c2 11684  cz 11973
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2153  ax-12 2169  ax-ext 2797  ax-sep 5199  ax-nul 5206  ax-pow 5262  ax-pr 5325  ax-un 7454  ax-resscn 10586  ax-1cn 10587  ax-icn 10588  ax-addcl 10589  ax-addrcl 10590  ax-mulcl 10591  ax-mulrcl 10592  ax-mulcom 10593  ax-addass 10594  ax-mulass 10595  ax-distr 10596  ax-i2m1 10597  ax-1ne0 10598  ax-1rid 10599  ax-rnegex 10600  ax-rrecex 10601  ax-cnre 10602  ax-pre-lttri 10603  ax-pre-lttrn 10604  ax-pre-ltadd 10605  ax-pre-mulgt0 10606
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 844  df-3or 1082  df-3an 1083  df-tru 1533  df-ex 1774  df-nf 1778  df-sb 2063  df-mo 2619  df-eu 2651  df-clab 2804  df-cleq 2818  df-clel 2897  df-nfc 2967  df-ne 3021  df-nel 3128  df-ral 3147  df-rex 3148  df-reu 3149  df-rmo 3150  df-rab 3151  df-v 3501  df-sbc 3776  df-csb 3887  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-pss 3957  df-nul 4295  df-if 4470  df-pw 4543  df-sn 4564  df-pr 4566  df-tp 4568  df-op 4570  df-uni 4837  df-iun 4918  df-br 5063  df-opab 5125  df-mpt 5143  df-tr 5169  df-id 5458  df-eprel 5463  df-po 5472  df-so 5473  df-fr 5512  df-we 5514  df-xp 5559  df-rel 5560  df-cnv 5561  df-co 5562  df-dm 5563  df-rn 5564  df-res 5565  df-ima 5566  df-pred 6145  df-ord 6191  df-on 6192  df-lim 6193  df-suc 6194  df-iota 6311  df-fun 6353  df-fn 6354  df-f 6355  df-f1 6356  df-fo 6357  df-f1o 6358  df-fv 6359  df-riota 7109  df-ov 7154  df-oprab 7155  df-mpo 7156  df-om 7572  df-wrecs 7941  df-recs 8002  df-rdg 8040  df-er 8282  df-en 8502  df-dom 8503  df-sdom 8504  df-pnf 10669  df-mnf 10670  df-xr 10671  df-ltxr 10672  df-le 10673  df-sub 10864  df-neg 10865  df-div 11290  df-nn 11631  df-2 11692  df-n0 11890  df-z 11974
This theorem is referenced by:  zeo2  12061  iseralt  15034  mod2eq1n2dvds  15688  mulsucdiv2z  15694  abssinper  25021  atantayl2  25429  basellem3  25574  chtub  25702  lgseisenlem1  25865  sumnnodd  41772  zeoALTV  43663  nn0eo  44416
  Copyright terms: Public domain W3C validator