MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  zeo Structured version   Visualization version   GIF version

Theorem zeo 12650
Description: An integer is even or odd. (Contributed by NM, 1-Jan-2006.)
Assertion
Ref Expression
zeo (𝑁 ∈ ℤ → ((𝑁 / 2) ∈ ℤ ∨ ((𝑁 + 1) / 2) ∈ ℤ))

Proof of Theorem zeo
StepHypRef Expression
1 elz 12562 . . 3 (𝑁 ∈ ℤ ↔ (𝑁 ∈ ℝ ∧ (𝑁 = 0 ∨ 𝑁 ∈ ℕ ∨ -𝑁 ∈ ℕ)))
2 oveq1 7418 . . . . . . 7 (𝑁 = 0 → (𝑁 / 2) = (0 / 2))
3 2cn 12289 . . . . . . . . 9 2 ∈ ℂ
4 2ne0 12318 . . . . . . . . 9 2 ≠ 0
53, 4div0i 11950 . . . . . . . 8 (0 / 2) = 0
6 0z 12571 . . . . . . . 8 0 ∈ ℤ
75, 6eqeltri 2829 . . . . . . 7 (0 / 2) ∈ ℤ
82, 7eqeltrdi 2841 . . . . . 6 (𝑁 = 0 → (𝑁 / 2) ∈ ℤ)
98pm2.24d 151 . . . . 5 (𝑁 = 0 → (¬ (𝑁 / 2) ∈ ℤ → ((𝑁 + 1) / 2) ∈ ℤ))
109adantl 482 . . . 4 ((𝑁 ∈ ℝ ∧ 𝑁 = 0) → (¬ (𝑁 / 2) ∈ ℤ → ((𝑁 + 1) / 2) ∈ ℤ))
11 nnz 12581 . . . . . . 7 ((𝑁 / 2) ∈ ℕ → (𝑁 / 2) ∈ ℤ)
1211con3i 154 . . . . . 6 (¬ (𝑁 / 2) ∈ ℤ → ¬ (𝑁 / 2) ∈ ℕ)
13 nneo 12648 . . . . . . . 8 (𝑁 ∈ ℕ → ((𝑁 / 2) ∈ ℕ ↔ ¬ ((𝑁 + 1) / 2) ∈ ℕ))
1413biimprd 247 . . . . . . 7 (𝑁 ∈ ℕ → (¬ ((𝑁 + 1) / 2) ∈ ℕ → (𝑁 / 2) ∈ ℕ))
1514con1d 145 . . . . . 6 (𝑁 ∈ ℕ → (¬ (𝑁 / 2) ∈ ℕ → ((𝑁 + 1) / 2) ∈ ℕ))
16 nnz 12581 . . . . . 6 (((𝑁 + 1) / 2) ∈ ℕ → ((𝑁 + 1) / 2) ∈ ℤ)
1712, 15, 16syl56 36 . . . . 5 (𝑁 ∈ ℕ → (¬ (𝑁 / 2) ∈ ℤ → ((𝑁 + 1) / 2) ∈ ℤ))
1817adantl 482 . . . 4 ((𝑁 ∈ ℝ ∧ 𝑁 ∈ ℕ) → (¬ (𝑁 / 2) ∈ ℤ → ((𝑁 + 1) / 2) ∈ ℤ))
19 recn 11202 . . . . . . . . . . 11 (𝑁 ∈ ℝ → 𝑁 ∈ ℂ)
20 divneg 11908 . . . . . . . . . . . 12 ((𝑁 ∈ ℂ ∧ 2 ∈ ℂ ∧ 2 ≠ 0) → -(𝑁 / 2) = (-𝑁 / 2))
213, 4, 20mp3an23 1453 . . . . . . . . . . 11 (𝑁 ∈ ℂ → -(𝑁 / 2) = (-𝑁 / 2))
2219, 21syl 17 . . . . . . . . . 10 (𝑁 ∈ ℝ → -(𝑁 / 2) = (-𝑁 / 2))
2322eleq1d 2818 . . . . . . . . 9 (𝑁 ∈ ℝ → (-(𝑁 / 2) ∈ ℕ ↔ (-𝑁 / 2) ∈ ℕ))
24 nnnegz 12563 . . . . . . . . 9 (-(𝑁 / 2) ∈ ℕ → --(𝑁 / 2) ∈ ℤ)
2523, 24syl6bir 253 . . . . . . . 8 (𝑁 ∈ ℝ → ((-𝑁 / 2) ∈ ℕ → --(𝑁 / 2) ∈ ℤ))
2619halfcld 12459 . . . . . . . . . 10 (𝑁 ∈ ℝ → (𝑁 / 2) ∈ ℂ)
2726negnegd 11564 . . . . . . . . 9 (𝑁 ∈ ℝ → --(𝑁 / 2) = (𝑁 / 2))
2827eleq1d 2818 . . . . . . . 8 (𝑁 ∈ ℝ → (--(𝑁 / 2) ∈ ℤ ↔ (𝑁 / 2) ∈ ℤ))
2925, 28sylibd 238 . . . . . . 7 (𝑁 ∈ ℝ → ((-𝑁 / 2) ∈ ℕ → (𝑁 / 2) ∈ ℤ))
3029adantr 481 . . . . . 6 ((𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ) → ((-𝑁 / 2) ∈ ℕ → (𝑁 / 2) ∈ ℤ))
3130con3d 152 . . . . 5 ((𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ) → (¬ (𝑁 / 2) ∈ ℤ → ¬ (-𝑁 / 2) ∈ ℕ))
32 nneo 12648 . . . . . . . 8 (-𝑁 ∈ ℕ → ((-𝑁 / 2) ∈ ℕ ↔ ¬ ((-𝑁 + 1) / 2) ∈ ℕ))
3332biimprd 247 . . . . . . 7 (-𝑁 ∈ ℕ → (¬ ((-𝑁 + 1) / 2) ∈ ℕ → (-𝑁 / 2) ∈ ℕ))
3433con1d 145 . . . . . 6 (-𝑁 ∈ ℕ → (¬ (-𝑁 / 2) ∈ ℕ → ((-𝑁 + 1) / 2) ∈ ℕ))
35 nnz 12581 . . . . . . 7 (((-𝑁 + 1) / 2) ∈ ℕ → ((-𝑁 + 1) / 2) ∈ ℤ)
36 peano2zm 12607 . . . . . . . . . 10 (((-𝑁 + 1) / 2) ∈ ℤ → (((-𝑁 + 1) / 2) − 1) ∈ ℤ)
37 ax-1cn 11170 . . . . . . . . . . . . . . . . . . 19 1 ∈ ℂ
3837, 3negsubdi2i 11548 . . . . . . . . . . . . . . . . . 18 -(1 − 2) = (2 − 1)
39 2m1e1 12340 . . . . . . . . . . . . . . . . . 18 (2 − 1) = 1
4038, 39eqtr2i 2761 . . . . . . . . . . . . . . . . 17 1 = -(1 − 2)
4137, 3subcli 11538 . . . . . . . . . . . . . . . . . 18 (1 − 2) ∈ ℂ
4237, 41negcon2i 11545 . . . . . . . . . . . . . . . . 17 (1 = -(1 − 2) ↔ (1 − 2) = -1)
4340, 42mpbi 229 . . . . . . . . . . . . . . . 16 (1 − 2) = -1
4443oveq2i 7422 . . . . . . . . . . . . . . 15 (-𝑁 + (1 − 2)) = (-𝑁 + -1)
45 negcl 11462 . . . . . . . . . . . . . . . 16 (𝑁 ∈ ℂ → -𝑁 ∈ ℂ)
46 addsubass 11472 . . . . . . . . . . . . . . . . 17 ((-𝑁 ∈ ℂ ∧ 1 ∈ ℂ ∧ 2 ∈ ℂ) → ((-𝑁 + 1) − 2) = (-𝑁 + (1 − 2)))
4737, 3, 46mp3an23 1453 . . . . . . . . . . . . . . . 16 (-𝑁 ∈ ℂ → ((-𝑁 + 1) − 2) = (-𝑁 + (1 − 2)))
4845, 47syl 17 . . . . . . . . . . . . . . 15 (𝑁 ∈ ℂ → ((-𝑁 + 1) − 2) = (-𝑁 + (1 − 2)))
49 negdi 11519 . . . . . . . . . . . . . . . 16 ((𝑁 ∈ ℂ ∧ 1 ∈ ℂ) → -(𝑁 + 1) = (-𝑁 + -1))
5037, 49mpan2 689 . . . . . . . . . . . . . . 15 (𝑁 ∈ ℂ → -(𝑁 + 1) = (-𝑁 + -1))
5144, 48, 503eqtr4a 2798 . . . . . . . . . . . . . 14 (𝑁 ∈ ℂ → ((-𝑁 + 1) − 2) = -(𝑁 + 1))
5251oveq1d 7426 . . . . . . . . . . . . 13 (𝑁 ∈ ℂ → (((-𝑁 + 1) − 2) / 2) = (-(𝑁 + 1) / 2))
53 2div2e1 12355 . . . . . . . . . . . . . . . 16 (2 / 2) = 1
5453eqcomi 2741 . . . . . . . . . . . . . . 15 1 = (2 / 2)
5554oveq2i 7422 . . . . . . . . . . . . . 14 (((-𝑁 + 1) / 2) − 1) = (((-𝑁 + 1) / 2) − (2 / 2))
56 peano2cn 11388 . . . . . . . . . . . . . . . 16 (-𝑁 ∈ ℂ → (-𝑁 + 1) ∈ ℂ)
5745, 56syl 17 . . . . . . . . . . . . . . 15 (𝑁 ∈ ℂ → (-𝑁 + 1) ∈ ℂ)
58 2cnne0 12424 . . . . . . . . . . . . . . . 16 (2 ∈ ℂ ∧ 2 ≠ 0)
59 divsubdir 11910 . . . . . . . . . . . . . . . 16 (((-𝑁 + 1) ∈ ℂ ∧ 2 ∈ ℂ ∧ (2 ∈ ℂ ∧ 2 ≠ 0)) → (((-𝑁 + 1) − 2) / 2) = (((-𝑁 + 1) / 2) − (2 / 2)))
603, 58, 59mp3an23 1453 . . . . . . . . . . . . . . 15 ((-𝑁 + 1) ∈ ℂ → (((-𝑁 + 1) − 2) / 2) = (((-𝑁 + 1) / 2) − (2 / 2)))
6157, 60syl 17 . . . . . . . . . . . . . 14 (𝑁 ∈ ℂ → (((-𝑁 + 1) − 2) / 2) = (((-𝑁 + 1) / 2) − (2 / 2)))
6255, 61eqtr4id 2791 . . . . . . . . . . . . 13 (𝑁 ∈ ℂ → (((-𝑁 + 1) / 2) − 1) = (((-𝑁 + 1) − 2) / 2))
63 peano2cn 11388 . . . . . . . . . . . . . 14 (𝑁 ∈ ℂ → (𝑁 + 1) ∈ ℂ)
64 divneg 11908 . . . . . . . . . . . . . . 15 (((𝑁 + 1) ∈ ℂ ∧ 2 ∈ ℂ ∧ 2 ≠ 0) → -((𝑁 + 1) / 2) = (-(𝑁 + 1) / 2))
653, 4, 64mp3an23 1453 . . . . . . . . . . . . . 14 ((𝑁 + 1) ∈ ℂ → -((𝑁 + 1) / 2) = (-(𝑁 + 1) / 2))
6663, 65syl 17 . . . . . . . . . . . . 13 (𝑁 ∈ ℂ → -((𝑁 + 1) / 2) = (-(𝑁 + 1) / 2))
6752, 62, 663eqtr4d 2782 . . . . . . . . . . . 12 (𝑁 ∈ ℂ → (((-𝑁 + 1) / 2) − 1) = -((𝑁 + 1) / 2))
6819, 67syl 17 . . . . . . . . . . 11 (𝑁 ∈ ℝ → (((-𝑁 + 1) / 2) − 1) = -((𝑁 + 1) / 2))
6968eleq1d 2818 . . . . . . . . . 10 (𝑁 ∈ ℝ → ((((-𝑁 + 1) / 2) − 1) ∈ ℤ ↔ -((𝑁 + 1) / 2) ∈ ℤ))
7036, 69imbitrid 243 . . . . . . . . 9 (𝑁 ∈ ℝ → (((-𝑁 + 1) / 2) ∈ ℤ → -((𝑁 + 1) / 2) ∈ ℤ))
71 znegcl 12599 . . . . . . . . 9 (-((𝑁 + 1) / 2) ∈ ℤ → --((𝑁 + 1) / 2) ∈ ℤ)
7270, 71syl6 35 . . . . . . . 8 (𝑁 ∈ ℝ → (((-𝑁 + 1) / 2) ∈ ℤ → --((𝑁 + 1) / 2) ∈ ℤ))
73 peano2re 11389 . . . . . . . . . . . 12 (𝑁 ∈ ℝ → (𝑁 + 1) ∈ ℝ)
7473recnd 11244 . . . . . . . . . . 11 (𝑁 ∈ ℝ → (𝑁 + 1) ∈ ℂ)
7574halfcld 12459 . . . . . . . . . 10 (𝑁 ∈ ℝ → ((𝑁 + 1) / 2) ∈ ℂ)
7675negnegd 11564 . . . . . . . . 9 (𝑁 ∈ ℝ → --((𝑁 + 1) / 2) = ((𝑁 + 1) / 2))
7776eleq1d 2818 . . . . . . . 8 (𝑁 ∈ ℝ → (--((𝑁 + 1) / 2) ∈ ℤ ↔ ((𝑁 + 1) / 2) ∈ ℤ))
7872, 77sylibd 238 . . . . . . 7 (𝑁 ∈ ℝ → (((-𝑁 + 1) / 2) ∈ ℤ → ((𝑁 + 1) / 2) ∈ ℤ))
7935, 78syl5 34 . . . . . 6 (𝑁 ∈ ℝ → (((-𝑁 + 1) / 2) ∈ ℕ → ((𝑁 + 1) / 2) ∈ ℤ))
8034, 79sylan9r 509 . . . . 5 ((𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ) → (¬ (-𝑁 / 2) ∈ ℕ → ((𝑁 + 1) / 2) ∈ ℤ))
8131, 80syld 47 . . . 4 ((𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ) → (¬ (𝑁 / 2) ∈ ℤ → ((𝑁 + 1) / 2) ∈ ℤ))
8210, 18, 813jaodan 1430 . . 3 ((𝑁 ∈ ℝ ∧ (𝑁 = 0 ∨ 𝑁 ∈ ℕ ∨ -𝑁 ∈ ℕ)) → (¬ (𝑁 / 2) ∈ ℤ → ((𝑁 + 1) / 2) ∈ ℤ))
831, 82sylbi 216 . 2 (𝑁 ∈ ℤ → (¬ (𝑁 / 2) ∈ ℤ → ((𝑁 + 1) / 2) ∈ ℤ))
8483orrd 861 1 (𝑁 ∈ ℤ → ((𝑁 / 2) ∈ ℤ ∨ ((𝑁 + 1) / 2) ∈ ℤ))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 396  wo 845  w3o 1086   = wceq 1541  wcel 2106  wne 2940  (class class class)co 7411  cc 11110  cr 11111  0cc0 11112  1c1 11113   + caddc 11115  cmin 11446  -cneg 11447   / cdiv 11873  cn 12214  2c2 12269  cz 12560
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7727  ax-resscn 11169  ax-1cn 11170  ax-icn 11171  ax-addcl 11172  ax-addrcl 11173  ax-mulcl 11174  ax-mulrcl 11175  ax-mulcom 11176  ax-addass 11177  ax-mulass 11178  ax-distr 11179  ax-i2m1 11180  ax-1ne0 11181  ax-1rid 11182  ax-rnegex 11183  ax-rrecex 11184  ax-cnre 11185  ax-pre-lttri 11186  ax-pre-lttrn 11187  ax-pre-ltadd 11188  ax-pre-mulgt0 11189
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-pred 6300  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-riota 7367  df-ov 7414  df-oprab 7415  df-mpo 7416  df-om 7858  df-2nd 7978  df-frecs 8268  df-wrecs 8299  df-recs 8373  df-rdg 8412  df-er 8705  df-en 8942  df-dom 8943  df-sdom 8944  df-pnf 11252  df-mnf 11253  df-xr 11254  df-ltxr 11255  df-le 11256  df-sub 11448  df-neg 11449  df-div 11874  df-nn 12215  df-2 12277  df-n0 12475  df-z 12561
This theorem is referenced by:  zeo2  12651  iseralt  15633  mod2eq1n2dvds  16292  mulsucdiv2z  16298  abssinper  26037  atantayl2  26450  basellem3  26594  chtub  26722  lgseisenlem1  26885  sumnnodd  44431  zeoALTV  46423  nn0eo  47298
  Copyright terms: Public domain W3C validator