MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  zeo Structured version   Visualization version   GIF version

Theorem zeo 12151
Description: An integer is even or odd. (Contributed by NM, 1-Jan-2006.)
Assertion
Ref Expression
zeo (𝑁 ∈ ℤ → ((𝑁 / 2) ∈ ℤ ∨ ((𝑁 + 1) / 2) ∈ ℤ))

Proof of Theorem zeo
StepHypRef Expression
1 elz 12066 . . 3 (𝑁 ∈ ℤ ↔ (𝑁 ∈ ℝ ∧ (𝑁 = 0 ∨ 𝑁 ∈ ℕ ∨ -𝑁 ∈ ℕ)))
2 oveq1 7179 . . . . . . 7 (𝑁 = 0 → (𝑁 / 2) = (0 / 2))
3 2cn 11793 . . . . . . . . 9 2 ∈ ℂ
4 2ne0 11822 . . . . . . . . 9 2 ≠ 0
53, 4div0i 11454 . . . . . . . 8 (0 / 2) = 0
6 0z 12075 . . . . . . . 8 0 ∈ ℤ
75, 6eqeltri 2829 . . . . . . 7 (0 / 2) ∈ ℤ
82, 7eqeltrdi 2841 . . . . . 6 (𝑁 = 0 → (𝑁 / 2) ∈ ℤ)
98pm2.24d 154 . . . . 5 (𝑁 = 0 → (¬ (𝑁 / 2) ∈ ℤ → ((𝑁 + 1) / 2) ∈ ℤ))
109adantl 485 . . . 4 ((𝑁 ∈ ℝ ∧ 𝑁 = 0) → (¬ (𝑁 / 2) ∈ ℤ → ((𝑁 + 1) / 2) ∈ ℤ))
11 nnz 12087 . . . . . . 7 ((𝑁 / 2) ∈ ℕ → (𝑁 / 2) ∈ ℤ)
1211con3i 157 . . . . . 6 (¬ (𝑁 / 2) ∈ ℤ → ¬ (𝑁 / 2) ∈ ℕ)
13 nneo 12149 . . . . . . . 8 (𝑁 ∈ ℕ → ((𝑁 / 2) ∈ ℕ ↔ ¬ ((𝑁 + 1) / 2) ∈ ℕ))
1413biimprd 251 . . . . . . 7 (𝑁 ∈ ℕ → (¬ ((𝑁 + 1) / 2) ∈ ℕ → (𝑁 / 2) ∈ ℕ))
1514con1d 147 . . . . . 6 (𝑁 ∈ ℕ → (¬ (𝑁 / 2) ∈ ℕ → ((𝑁 + 1) / 2) ∈ ℕ))
16 nnz 12087 . . . . . 6 (((𝑁 + 1) / 2) ∈ ℕ → ((𝑁 + 1) / 2) ∈ ℤ)
1712, 15, 16syl56 36 . . . . 5 (𝑁 ∈ ℕ → (¬ (𝑁 / 2) ∈ ℤ → ((𝑁 + 1) / 2) ∈ ℤ))
1817adantl 485 . . . 4 ((𝑁 ∈ ℝ ∧ 𝑁 ∈ ℕ) → (¬ (𝑁 / 2) ∈ ℤ → ((𝑁 + 1) / 2) ∈ ℤ))
19 recn 10707 . . . . . . . . . . 11 (𝑁 ∈ ℝ → 𝑁 ∈ ℂ)
20 divneg 11412 . . . . . . . . . . . 12 ((𝑁 ∈ ℂ ∧ 2 ∈ ℂ ∧ 2 ≠ 0) → -(𝑁 / 2) = (-𝑁 / 2))
213, 4, 20mp3an23 1454 . . . . . . . . . . 11 (𝑁 ∈ ℂ → -(𝑁 / 2) = (-𝑁 / 2))
2219, 21syl 17 . . . . . . . . . 10 (𝑁 ∈ ℝ → -(𝑁 / 2) = (-𝑁 / 2))
2322eleq1d 2817 . . . . . . . . 9 (𝑁 ∈ ℝ → (-(𝑁 / 2) ∈ ℕ ↔ (-𝑁 / 2) ∈ ℕ))
24 nnnegz 12067 . . . . . . . . 9 (-(𝑁 / 2) ∈ ℕ → --(𝑁 / 2) ∈ ℤ)
2523, 24syl6bir 257 . . . . . . . 8 (𝑁 ∈ ℝ → ((-𝑁 / 2) ∈ ℕ → --(𝑁 / 2) ∈ ℤ))
2619halfcld 11963 . . . . . . . . . 10 (𝑁 ∈ ℝ → (𝑁 / 2) ∈ ℂ)
2726negnegd 11068 . . . . . . . . 9 (𝑁 ∈ ℝ → --(𝑁 / 2) = (𝑁 / 2))
2827eleq1d 2817 . . . . . . . 8 (𝑁 ∈ ℝ → (--(𝑁 / 2) ∈ ℤ ↔ (𝑁 / 2) ∈ ℤ))
2925, 28sylibd 242 . . . . . . 7 (𝑁 ∈ ℝ → ((-𝑁 / 2) ∈ ℕ → (𝑁 / 2) ∈ ℤ))
3029adantr 484 . . . . . 6 ((𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ) → ((-𝑁 / 2) ∈ ℕ → (𝑁 / 2) ∈ ℤ))
3130con3d 155 . . . . 5 ((𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ) → (¬ (𝑁 / 2) ∈ ℤ → ¬ (-𝑁 / 2) ∈ ℕ))
32 nneo 12149 . . . . . . . 8 (-𝑁 ∈ ℕ → ((-𝑁 / 2) ∈ ℕ ↔ ¬ ((-𝑁 + 1) / 2) ∈ ℕ))
3332biimprd 251 . . . . . . 7 (-𝑁 ∈ ℕ → (¬ ((-𝑁 + 1) / 2) ∈ ℕ → (-𝑁 / 2) ∈ ℕ))
3433con1d 147 . . . . . 6 (-𝑁 ∈ ℕ → (¬ (-𝑁 / 2) ∈ ℕ → ((-𝑁 + 1) / 2) ∈ ℕ))
35 nnz 12087 . . . . . . 7 (((-𝑁 + 1) / 2) ∈ ℕ → ((-𝑁 + 1) / 2) ∈ ℤ)
36 peano2zm 12108 . . . . . . . . . 10 (((-𝑁 + 1) / 2) ∈ ℤ → (((-𝑁 + 1) / 2) − 1) ∈ ℤ)
37 ax-1cn 10675 . . . . . . . . . . . . . . . . . . 19 1 ∈ ℂ
3837, 3negsubdi2i 11052 . . . . . . . . . . . . . . . . . 18 -(1 − 2) = (2 − 1)
39 2m1e1 11844 . . . . . . . . . . . . . . . . . 18 (2 − 1) = 1
4038, 39eqtr2i 2762 . . . . . . . . . . . . . . . . 17 1 = -(1 − 2)
4137, 3subcli 11042 . . . . . . . . . . . . . . . . . 18 (1 − 2) ∈ ℂ
4237, 41negcon2i 11049 . . . . . . . . . . . . . . . . 17 (1 = -(1 − 2) ↔ (1 − 2) = -1)
4340, 42mpbi 233 . . . . . . . . . . . . . . . 16 (1 − 2) = -1
4443oveq2i 7183 . . . . . . . . . . . . . . 15 (-𝑁 + (1 − 2)) = (-𝑁 + -1)
45 negcl 10966 . . . . . . . . . . . . . . . 16 (𝑁 ∈ ℂ → -𝑁 ∈ ℂ)
46 addsubass 10976 . . . . . . . . . . . . . . . . 17 ((-𝑁 ∈ ℂ ∧ 1 ∈ ℂ ∧ 2 ∈ ℂ) → ((-𝑁 + 1) − 2) = (-𝑁 + (1 − 2)))
4737, 3, 46mp3an23 1454 . . . . . . . . . . . . . . . 16 (-𝑁 ∈ ℂ → ((-𝑁 + 1) − 2) = (-𝑁 + (1 − 2)))
4845, 47syl 17 . . . . . . . . . . . . . . 15 (𝑁 ∈ ℂ → ((-𝑁 + 1) − 2) = (-𝑁 + (1 − 2)))
49 negdi 11023 . . . . . . . . . . . . . . . 16 ((𝑁 ∈ ℂ ∧ 1 ∈ ℂ) → -(𝑁 + 1) = (-𝑁 + -1))
5037, 49mpan2 691 . . . . . . . . . . . . . . 15 (𝑁 ∈ ℂ → -(𝑁 + 1) = (-𝑁 + -1))
5144, 48, 503eqtr4a 2799 . . . . . . . . . . . . . 14 (𝑁 ∈ ℂ → ((-𝑁 + 1) − 2) = -(𝑁 + 1))
5251oveq1d 7187 . . . . . . . . . . . . 13 (𝑁 ∈ ℂ → (((-𝑁 + 1) − 2) / 2) = (-(𝑁 + 1) / 2))
53 2div2e1 11859 . . . . . . . . . . . . . . . 16 (2 / 2) = 1
5453eqcomi 2747 . . . . . . . . . . . . . . 15 1 = (2 / 2)
5554oveq2i 7183 . . . . . . . . . . . . . 14 (((-𝑁 + 1) / 2) − 1) = (((-𝑁 + 1) / 2) − (2 / 2))
56 peano2cn 10892 . . . . . . . . . . . . . . . 16 (-𝑁 ∈ ℂ → (-𝑁 + 1) ∈ ℂ)
5745, 56syl 17 . . . . . . . . . . . . . . 15 (𝑁 ∈ ℂ → (-𝑁 + 1) ∈ ℂ)
58 2cnne0 11928 . . . . . . . . . . . . . . . 16 (2 ∈ ℂ ∧ 2 ≠ 0)
59 divsubdir 11414 . . . . . . . . . . . . . . . 16 (((-𝑁 + 1) ∈ ℂ ∧ 2 ∈ ℂ ∧ (2 ∈ ℂ ∧ 2 ≠ 0)) → (((-𝑁 + 1) − 2) / 2) = (((-𝑁 + 1) / 2) − (2 / 2)))
603, 58, 59mp3an23 1454 . . . . . . . . . . . . . . 15 ((-𝑁 + 1) ∈ ℂ → (((-𝑁 + 1) − 2) / 2) = (((-𝑁 + 1) / 2) − (2 / 2)))
6157, 60syl 17 . . . . . . . . . . . . . 14 (𝑁 ∈ ℂ → (((-𝑁 + 1) − 2) / 2) = (((-𝑁 + 1) / 2) − (2 / 2)))
6255, 61eqtr4id 2792 . . . . . . . . . . . . 13 (𝑁 ∈ ℂ → (((-𝑁 + 1) / 2) − 1) = (((-𝑁 + 1) − 2) / 2))
63 peano2cn 10892 . . . . . . . . . . . . . 14 (𝑁 ∈ ℂ → (𝑁 + 1) ∈ ℂ)
64 divneg 11412 . . . . . . . . . . . . . . 15 (((𝑁 + 1) ∈ ℂ ∧ 2 ∈ ℂ ∧ 2 ≠ 0) → -((𝑁 + 1) / 2) = (-(𝑁 + 1) / 2))
653, 4, 64mp3an23 1454 . . . . . . . . . . . . . 14 ((𝑁 + 1) ∈ ℂ → -((𝑁 + 1) / 2) = (-(𝑁 + 1) / 2))
6663, 65syl 17 . . . . . . . . . . . . 13 (𝑁 ∈ ℂ → -((𝑁 + 1) / 2) = (-(𝑁 + 1) / 2))
6752, 62, 663eqtr4d 2783 . . . . . . . . . . . 12 (𝑁 ∈ ℂ → (((-𝑁 + 1) / 2) − 1) = -((𝑁 + 1) / 2))
6819, 67syl 17 . . . . . . . . . . 11 (𝑁 ∈ ℝ → (((-𝑁 + 1) / 2) − 1) = -((𝑁 + 1) / 2))
6968eleq1d 2817 . . . . . . . . . 10 (𝑁 ∈ ℝ → ((((-𝑁 + 1) / 2) − 1) ∈ ℤ ↔ -((𝑁 + 1) / 2) ∈ ℤ))
7036, 69syl5ib 247 . . . . . . . . 9 (𝑁 ∈ ℝ → (((-𝑁 + 1) / 2) ∈ ℤ → -((𝑁 + 1) / 2) ∈ ℤ))
71 znegcl 12100 . . . . . . . . 9 (-((𝑁 + 1) / 2) ∈ ℤ → --((𝑁 + 1) / 2) ∈ ℤ)
7270, 71syl6 35 . . . . . . . 8 (𝑁 ∈ ℝ → (((-𝑁 + 1) / 2) ∈ ℤ → --((𝑁 + 1) / 2) ∈ ℤ))
73 peano2re 10893 . . . . . . . . . . . 12 (𝑁 ∈ ℝ → (𝑁 + 1) ∈ ℝ)
7473recnd 10749 . . . . . . . . . . 11 (𝑁 ∈ ℝ → (𝑁 + 1) ∈ ℂ)
7574halfcld 11963 . . . . . . . . . 10 (𝑁 ∈ ℝ → ((𝑁 + 1) / 2) ∈ ℂ)
7675negnegd 11068 . . . . . . . . 9 (𝑁 ∈ ℝ → --((𝑁 + 1) / 2) = ((𝑁 + 1) / 2))
7776eleq1d 2817 . . . . . . . 8 (𝑁 ∈ ℝ → (--((𝑁 + 1) / 2) ∈ ℤ ↔ ((𝑁 + 1) / 2) ∈ ℤ))
7872, 77sylibd 242 . . . . . . 7 (𝑁 ∈ ℝ → (((-𝑁 + 1) / 2) ∈ ℤ → ((𝑁 + 1) / 2) ∈ ℤ))
7935, 78syl5 34 . . . . . 6 (𝑁 ∈ ℝ → (((-𝑁 + 1) / 2) ∈ ℕ → ((𝑁 + 1) / 2) ∈ ℤ))
8034, 79sylan9r 512 . . . . 5 ((𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ) → (¬ (-𝑁 / 2) ∈ ℕ → ((𝑁 + 1) / 2) ∈ ℤ))
8131, 80syld 47 . . . 4 ((𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ) → (¬ (𝑁 / 2) ∈ ℤ → ((𝑁 + 1) / 2) ∈ ℤ))
8210, 18, 813jaodan 1431 . . 3 ((𝑁 ∈ ℝ ∧ (𝑁 = 0 ∨ 𝑁 ∈ ℕ ∨ -𝑁 ∈ ℕ)) → (¬ (𝑁 / 2) ∈ ℤ → ((𝑁 + 1) / 2) ∈ ℤ))
831, 82sylbi 220 . 2 (𝑁 ∈ ℤ → (¬ (𝑁 / 2) ∈ ℤ → ((𝑁 + 1) / 2) ∈ ℤ))
8483orrd 862 1 (𝑁 ∈ ℤ → ((𝑁 / 2) ∈ ℤ ∨ ((𝑁 + 1) / 2) ∈ ℤ))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 399  wo 846  w3o 1087   = wceq 1542  wcel 2114  wne 2934  (class class class)co 7172  cc 10615  cr 10616  0cc0 10617  1c1 10618   + caddc 10620  cmin 10950  -cneg 10951   / cdiv 11377  cn 11718  2c2 11773  cz 12064
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2020  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2162  ax-12 2179  ax-ext 2710  ax-sep 5167  ax-nul 5174  ax-pow 5232  ax-pr 5296  ax-un 7481  ax-resscn 10674  ax-1cn 10675  ax-icn 10676  ax-addcl 10677  ax-addrcl 10678  ax-mulcl 10679  ax-mulrcl 10680  ax-mulcom 10681  ax-addass 10682  ax-mulass 10683  ax-distr 10684  ax-i2m1 10685  ax-1ne0 10686  ax-1rid 10687  ax-rnegex 10688  ax-rrecex 10689  ax-cnre 10690  ax-pre-lttri 10691  ax-pre-lttrn 10692  ax-pre-ltadd 10693  ax-pre-mulgt0 10694
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2075  df-mo 2540  df-eu 2570  df-clab 2717  df-cleq 2730  df-clel 2811  df-nfc 2881  df-ne 2935  df-nel 3039  df-ral 3058  df-rex 3059  df-reu 3060  df-rmo 3061  df-rab 3062  df-v 3400  df-sbc 3681  df-csb 3791  df-dif 3846  df-un 3848  df-in 3850  df-ss 3860  df-pss 3862  df-nul 4212  df-if 4415  df-pw 4490  df-sn 4517  df-pr 4519  df-tp 4521  df-op 4523  df-uni 4797  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5429  df-eprel 5434  df-po 5442  df-so 5443  df-fr 5483  df-we 5485  df-xp 5531  df-rel 5532  df-cnv 5533  df-co 5534  df-dm 5535  df-rn 5536  df-res 5537  df-ima 5538  df-pred 6129  df-ord 6175  df-on 6176  df-lim 6177  df-suc 6178  df-iota 6297  df-fun 6341  df-fn 6342  df-f 6343  df-f1 6344  df-fo 6345  df-f1o 6346  df-fv 6347  df-riota 7129  df-ov 7175  df-oprab 7176  df-mpo 7177  df-om 7602  df-wrecs 7978  df-recs 8039  df-rdg 8077  df-er 8322  df-en 8558  df-dom 8559  df-sdom 8560  df-pnf 10757  df-mnf 10758  df-xr 10759  df-ltxr 10760  df-le 10761  df-sub 10952  df-neg 10953  df-div 11378  df-nn 11719  df-2 11781  df-n0 11979  df-z 12065
This theorem is referenced by:  zeo2  12152  iseralt  15136  mod2eq1n2dvds  15794  mulsucdiv2z  15800  abssinper  25267  atantayl2  25678  basellem3  25822  chtub  25950  lgseisenlem1  26113  sumnnodd  42735  zeoALTV  44685  nn0eo  45437
  Copyright terms: Public domain W3C validator