MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  zeo Structured version   Visualization version   GIF version

Theorem zeo 12679
Description: An integer is even or odd. (Contributed by NM, 1-Jan-2006.)
Assertion
Ref Expression
zeo (𝑁 ∈ ℤ → ((𝑁 / 2) ∈ ℤ ∨ ((𝑁 + 1) / 2) ∈ ℤ))

Proof of Theorem zeo
StepHypRef Expression
1 elz 12591 . . 3 (𝑁 ∈ ℤ ↔ (𝑁 ∈ ℝ ∧ (𝑁 = 0 ∨ 𝑁 ∈ ℕ ∨ -𝑁 ∈ ℕ)))
2 oveq1 7427 . . . . . . 7 (𝑁 = 0 → (𝑁 / 2) = (0 / 2))
3 2cn 12318 . . . . . . . . 9 2 ∈ ℂ
4 2ne0 12347 . . . . . . . . 9 2 ≠ 0
53, 4div0i 11979 . . . . . . . 8 (0 / 2) = 0
6 0z 12600 . . . . . . . 8 0 ∈ ℤ
75, 6eqeltri 2825 . . . . . . 7 (0 / 2) ∈ ℤ
82, 7eqeltrdi 2837 . . . . . 6 (𝑁 = 0 → (𝑁 / 2) ∈ ℤ)
98pm2.24d 151 . . . . 5 (𝑁 = 0 → (¬ (𝑁 / 2) ∈ ℤ → ((𝑁 + 1) / 2) ∈ ℤ))
109adantl 481 . . . 4 ((𝑁 ∈ ℝ ∧ 𝑁 = 0) → (¬ (𝑁 / 2) ∈ ℤ → ((𝑁 + 1) / 2) ∈ ℤ))
11 nnz 12610 . . . . . . 7 ((𝑁 / 2) ∈ ℕ → (𝑁 / 2) ∈ ℤ)
1211con3i 154 . . . . . 6 (¬ (𝑁 / 2) ∈ ℤ → ¬ (𝑁 / 2) ∈ ℕ)
13 nneo 12677 . . . . . . . 8 (𝑁 ∈ ℕ → ((𝑁 / 2) ∈ ℕ ↔ ¬ ((𝑁 + 1) / 2) ∈ ℕ))
1413biimprd 247 . . . . . . 7 (𝑁 ∈ ℕ → (¬ ((𝑁 + 1) / 2) ∈ ℕ → (𝑁 / 2) ∈ ℕ))
1514con1d 145 . . . . . 6 (𝑁 ∈ ℕ → (¬ (𝑁 / 2) ∈ ℕ → ((𝑁 + 1) / 2) ∈ ℕ))
16 nnz 12610 . . . . . 6 (((𝑁 + 1) / 2) ∈ ℕ → ((𝑁 + 1) / 2) ∈ ℤ)
1712, 15, 16syl56 36 . . . . 5 (𝑁 ∈ ℕ → (¬ (𝑁 / 2) ∈ ℤ → ((𝑁 + 1) / 2) ∈ ℤ))
1817adantl 481 . . . 4 ((𝑁 ∈ ℝ ∧ 𝑁 ∈ ℕ) → (¬ (𝑁 / 2) ∈ ℤ → ((𝑁 + 1) / 2) ∈ ℤ))
19 recn 11229 . . . . . . . . . . 11 (𝑁 ∈ ℝ → 𝑁 ∈ ℂ)
20 divneg 11937 . . . . . . . . . . . 12 ((𝑁 ∈ ℂ ∧ 2 ∈ ℂ ∧ 2 ≠ 0) → -(𝑁 / 2) = (-𝑁 / 2))
213, 4, 20mp3an23 1450 . . . . . . . . . . 11 (𝑁 ∈ ℂ → -(𝑁 / 2) = (-𝑁 / 2))
2219, 21syl 17 . . . . . . . . . 10 (𝑁 ∈ ℝ → -(𝑁 / 2) = (-𝑁 / 2))
2322eleq1d 2814 . . . . . . . . 9 (𝑁 ∈ ℝ → (-(𝑁 / 2) ∈ ℕ ↔ (-𝑁 / 2) ∈ ℕ))
24 nnnegz 12592 . . . . . . . . 9 (-(𝑁 / 2) ∈ ℕ → --(𝑁 / 2) ∈ ℤ)
2523, 24syl6bir 254 . . . . . . . 8 (𝑁 ∈ ℝ → ((-𝑁 / 2) ∈ ℕ → --(𝑁 / 2) ∈ ℤ))
2619halfcld 12488 . . . . . . . . . 10 (𝑁 ∈ ℝ → (𝑁 / 2) ∈ ℂ)
2726negnegd 11593 . . . . . . . . 9 (𝑁 ∈ ℝ → --(𝑁 / 2) = (𝑁 / 2))
2827eleq1d 2814 . . . . . . . 8 (𝑁 ∈ ℝ → (--(𝑁 / 2) ∈ ℤ ↔ (𝑁 / 2) ∈ ℤ))
2925, 28sylibd 238 . . . . . . 7 (𝑁 ∈ ℝ → ((-𝑁 / 2) ∈ ℕ → (𝑁 / 2) ∈ ℤ))
3029adantr 480 . . . . . 6 ((𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ) → ((-𝑁 / 2) ∈ ℕ → (𝑁 / 2) ∈ ℤ))
3130con3d 152 . . . . 5 ((𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ) → (¬ (𝑁 / 2) ∈ ℤ → ¬ (-𝑁 / 2) ∈ ℕ))
32 nneo 12677 . . . . . . . 8 (-𝑁 ∈ ℕ → ((-𝑁 / 2) ∈ ℕ ↔ ¬ ((-𝑁 + 1) / 2) ∈ ℕ))
3332biimprd 247 . . . . . . 7 (-𝑁 ∈ ℕ → (¬ ((-𝑁 + 1) / 2) ∈ ℕ → (-𝑁 / 2) ∈ ℕ))
3433con1d 145 . . . . . 6 (-𝑁 ∈ ℕ → (¬ (-𝑁 / 2) ∈ ℕ → ((-𝑁 + 1) / 2) ∈ ℕ))
35 nnz 12610 . . . . . . 7 (((-𝑁 + 1) / 2) ∈ ℕ → ((-𝑁 + 1) / 2) ∈ ℤ)
36 peano2zm 12636 . . . . . . . . . 10 (((-𝑁 + 1) / 2) ∈ ℤ → (((-𝑁 + 1) / 2) − 1) ∈ ℤ)
37 ax-1cn 11197 . . . . . . . . . . . . . . . . . . 19 1 ∈ ℂ
3837, 3negsubdi2i 11577 . . . . . . . . . . . . . . . . . 18 -(1 − 2) = (2 − 1)
39 2m1e1 12369 . . . . . . . . . . . . . . . . . 18 (2 − 1) = 1
4038, 39eqtr2i 2757 . . . . . . . . . . . . . . . . 17 1 = -(1 − 2)
4137, 3subcli 11567 . . . . . . . . . . . . . . . . . 18 (1 − 2) ∈ ℂ
4237, 41negcon2i 11574 . . . . . . . . . . . . . . . . 17 (1 = -(1 − 2) ↔ (1 − 2) = -1)
4340, 42mpbi 229 . . . . . . . . . . . . . . . 16 (1 − 2) = -1
4443oveq2i 7431 . . . . . . . . . . . . . . 15 (-𝑁 + (1 − 2)) = (-𝑁 + -1)
45 negcl 11491 . . . . . . . . . . . . . . . 16 (𝑁 ∈ ℂ → -𝑁 ∈ ℂ)
46 addsubass 11501 . . . . . . . . . . . . . . . . 17 ((-𝑁 ∈ ℂ ∧ 1 ∈ ℂ ∧ 2 ∈ ℂ) → ((-𝑁 + 1) − 2) = (-𝑁 + (1 − 2)))
4737, 3, 46mp3an23 1450 . . . . . . . . . . . . . . . 16 (-𝑁 ∈ ℂ → ((-𝑁 + 1) − 2) = (-𝑁 + (1 − 2)))
4845, 47syl 17 . . . . . . . . . . . . . . 15 (𝑁 ∈ ℂ → ((-𝑁 + 1) − 2) = (-𝑁 + (1 − 2)))
49 negdi 11548 . . . . . . . . . . . . . . . 16 ((𝑁 ∈ ℂ ∧ 1 ∈ ℂ) → -(𝑁 + 1) = (-𝑁 + -1))
5037, 49mpan2 690 . . . . . . . . . . . . . . 15 (𝑁 ∈ ℂ → -(𝑁 + 1) = (-𝑁 + -1))
5144, 48, 503eqtr4a 2794 . . . . . . . . . . . . . 14 (𝑁 ∈ ℂ → ((-𝑁 + 1) − 2) = -(𝑁 + 1))
5251oveq1d 7435 . . . . . . . . . . . . 13 (𝑁 ∈ ℂ → (((-𝑁 + 1) − 2) / 2) = (-(𝑁 + 1) / 2))
53 2div2e1 12384 . . . . . . . . . . . . . . . 16 (2 / 2) = 1
5453eqcomi 2737 . . . . . . . . . . . . . . 15 1 = (2 / 2)
5554oveq2i 7431 . . . . . . . . . . . . . 14 (((-𝑁 + 1) / 2) − 1) = (((-𝑁 + 1) / 2) − (2 / 2))
56 peano2cn 11417 . . . . . . . . . . . . . . . 16 (-𝑁 ∈ ℂ → (-𝑁 + 1) ∈ ℂ)
5745, 56syl 17 . . . . . . . . . . . . . . 15 (𝑁 ∈ ℂ → (-𝑁 + 1) ∈ ℂ)
58 2cnne0 12453 . . . . . . . . . . . . . . . 16 (2 ∈ ℂ ∧ 2 ≠ 0)
59 divsubdir 11939 . . . . . . . . . . . . . . . 16 (((-𝑁 + 1) ∈ ℂ ∧ 2 ∈ ℂ ∧ (2 ∈ ℂ ∧ 2 ≠ 0)) → (((-𝑁 + 1) − 2) / 2) = (((-𝑁 + 1) / 2) − (2 / 2)))
603, 58, 59mp3an23 1450 . . . . . . . . . . . . . . 15 ((-𝑁 + 1) ∈ ℂ → (((-𝑁 + 1) − 2) / 2) = (((-𝑁 + 1) / 2) − (2 / 2)))
6157, 60syl 17 . . . . . . . . . . . . . 14 (𝑁 ∈ ℂ → (((-𝑁 + 1) − 2) / 2) = (((-𝑁 + 1) / 2) − (2 / 2)))
6255, 61eqtr4id 2787 . . . . . . . . . . . . 13 (𝑁 ∈ ℂ → (((-𝑁 + 1) / 2) − 1) = (((-𝑁 + 1) − 2) / 2))
63 peano2cn 11417 . . . . . . . . . . . . . 14 (𝑁 ∈ ℂ → (𝑁 + 1) ∈ ℂ)
64 divneg 11937 . . . . . . . . . . . . . . 15 (((𝑁 + 1) ∈ ℂ ∧ 2 ∈ ℂ ∧ 2 ≠ 0) → -((𝑁 + 1) / 2) = (-(𝑁 + 1) / 2))
653, 4, 64mp3an23 1450 . . . . . . . . . . . . . 14 ((𝑁 + 1) ∈ ℂ → -((𝑁 + 1) / 2) = (-(𝑁 + 1) / 2))
6663, 65syl 17 . . . . . . . . . . . . 13 (𝑁 ∈ ℂ → -((𝑁 + 1) / 2) = (-(𝑁 + 1) / 2))
6752, 62, 663eqtr4d 2778 . . . . . . . . . . . 12 (𝑁 ∈ ℂ → (((-𝑁 + 1) / 2) − 1) = -((𝑁 + 1) / 2))
6819, 67syl 17 . . . . . . . . . . 11 (𝑁 ∈ ℝ → (((-𝑁 + 1) / 2) − 1) = -((𝑁 + 1) / 2))
6968eleq1d 2814 . . . . . . . . . 10 (𝑁 ∈ ℝ → ((((-𝑁 + 1) / 2) − 1) ∈ ℤ ↔ -((𝑁 + 1) / 2) ∈ ℤ))
7036, 69imbitrid 243 . . . . . . . . 9 (𝑁 ∈ ℝ → (((-𝑁 + 1) / 2) ∈ ℤ → -((𝑁 + 1) / 2) ∈ ℤ))
71 znegcl 12628 . . . . . . . . 9 (-((𝑁 + 1) / 2) ∈ ℤ → --((𝑁 + 1) / 2) ∈ ℤ)
7270, 71syl6 35 . . . . . . . 8 (𝑁 ∈ ℝ → (((-𝑁 + 1) / 2) ∈ ℤ → --((𝑁 + 1) / 2) ∈ ℤ))
73 peano2re 11418 . . . . . . . . . . . 12 (𝑁 ∈ ℝ → (𝑁 + 1) ∈ ℝ)
7473recnd 11273 . . . . . . . . . . 11 (𝑁 ∈ ℝ → (𝑁 + 1) ∈ ℂ)
7574halfcld 12488 . . . . . . . . . 10 (𝑁 ∈ ℝ → ((𝑁 + 1) / 2) ∈ ℂ)
7675negnegd 11593 . . . . . . . . 9 (𝑁 ∈ ℝ → --((𝑁 + 1) / 2) = ((𝑁 + 1) / 2))
7776eleq1d 2814 . . . . . . . 8 (𝑁 ∈ ℝ → (--((𝑁 + 1) / 2) ∈ ℤ ↔ ((𝑁 + 1) / 2) ∈ ℤ))
7872, 77sylibd 238 . . . . . . 7 (𝑁 ∈ ℝ → (((-𝑁 + 1) / 2) ∈ ℤ → ((𝑁 + 1) / 2) ∈ ℤ))
7935, 78syl5 34 . . . . . 6 (𝑁 ∈ ℝ → (((-𝑁 + 1) / 2) ∈ ℕ → ((𝑁 + 1) / 2) ∈ ℤ))
8034, 79sylan9r 508 . . . . 5 ((𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ) → (¬ (-𝑁 / 2) ∈ ℕ → ((𝑁 + 1) / 2) ∈ ℤ))
8131, 80syld 47 . . . 4 ((𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ) → (¬ (𝑁 / 2) ∈ ℤ → ((𝑁 + 1) / 2) ∈ ℤ))
8210, 18, 813jaodan 1428 . . 3 ((𝑁 ∈ ℝ ∧ (𝑁 = 0 ∨ 𝑁 ∈ ℕ ∨ -𝑁 ∈ ℕ)) → (¬ (𝑁 / 2) ∈ ℤ → ((𝑁 + 1) / 2) ∈ ℤ))
831, 82sylbi 216 . 2 (𝑁 ∈ ℤ → (¬ (𝑁 / 2) ∈ ℤ → ((𝑁 + 1) / 2) ∈ ℤ))
8483orrd 862 1 (𝑁 ∈ ℤ → ((𝑁 / 2) ∈ ℤ ∨ ((𝑁 + 1) / 2) ∈ ℤ))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  wo 846  w3o 1084   = wceq 1534  wcel 2099  wne 2937  (class class class)co 7420  cc 11137  cr 11138  0cc0 11139  1c1 11140   + caddc 11142  cmin 11475  -cneg 11476   / cdiv 11902  cn 12243  2c2 12298  cz 12589
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2699  ax-sep 5299  ax-nul 5306  ax-pow 5365  ax-pr 5429  ax-un 7740  ax-resscn 11196  ax-1cn 11197  ax-icn 11198  ax-addcl 11199  ax-addrcl 11200  ax-mulcl 11201  ax-mulrcl 11202  ax-mulcom 11203  ax-addass 11204  ax-mulass 11205  ax-distr 11206  ax-i2m1 11207  ax-1ne0 11208  ax-1rid 11209  ax-rnegex 11210  ax-rrecex 11211  ax-cnre 11212  ax-pre-lttri 11213  ax-pre-lttrn 11214  ax-pre-ltadd 11215  ax-pre-mulgt0 11216
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3or 1086  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2530  df-eu 2559  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-rmo 3373  df-reu 3374  df-rab 3430  df-v 3473  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4909  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5576  df-eprel 5582  df-po 5590  df-so 5591  df-fr 5633  df-we 5635  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-pred 6305  df-ord 6372  df-on 6373  df-lim 6374  df-suc 6375  df-iota 6500  df-fun 6550  df-fn 6551  df-f 6552  df-f1 6553  df-fo 6554  df-f1o 6555  df-fv 6556  df-riota 7376  df-ov 7423  df-oprab 7424  df-mpo 7425  df-om 7871  df-2nd 7994  df-frecs 8287  df-wrecs 8318  df-recs 8392  df-rdg 8431  df-er 8725  df-en 8965  df-dom 8966  df-sdom 8967  df-pnf 11281  df-mnf 11282  df-xr 11283  df-ltxr 11284  df-le 11285  df-sub 11477  df-neg 11478  df-div 11903  df-nn 12244  df-2 12306  df-n0 12504  df-z 12590
This theorem is referenced by:  zeo2  12680  iseralt  15664  mod2eq1n2dvds  16324  mulsucdiv2z  16330  abssinper  26468  atantayl2  26883  basellem3  27028  chtub  27158  lgseisenlem1  27321  sumnnodd  45018  zeoALTV  47010  nn0eo  47601
  Copyright terms: Public domain W3C validator