New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > sylbid | Unicode version |
Description: A syllogism deduction. (Contributed by NM, 3-Aug-1994.) |
Ref | Expression |
---|---|
sylbid.1 | |
sylbid.2 |
Ref | Expression |
---|---|
sylbid |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sylbid.1 | . . 3 | |
2 | 1 | biimpd 198 | . 2 |
3 | sylbid.2 | . 2 | |
4 | 2, 3 | syld 40 | 1 |
Colors of variables: wff setvar class |
Syntax hints: wi 4 wb 176 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 177 |
This theorem is referenced by: 3imtr4d 259 ax11eq 2193 ax11el 2194 leltfintr 4459 tfin11 4494 sfinltfin 4536 phi11lem1 4596 xp11 5057 xpcan 5058 xpcan2 5059 enprmaplem3 6079 enprmaplem6 6082 ce0addcnnul 6180 ceclb 6184 fce 6189 sbth 6207 dflec2 6211 lectr 6212 leaddc1 6215 leconnnc 6219 tlecg 6231 letc 6232 ce0lenc1 6240 nclenn 6250 lemuc1 6254 lecadd2 6267 ncslesuc 6268 nchoicelem9 6298 nchoicelem12 6301 nchoicelem17 6306 dmfrec 6317 fnfreclem2 6319 fnfreclem3 6320 |
Copyright terms: Public domain | W3C validator |