NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  anidm Unicode version

Theorem anidm 625
Description: Idempotent law for conjunction. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Wolf Lammen, 14-Mar-2014.)
Assertion
Ref Expression
anidm

Proof of Theorem anidm
StepHypRef Expression
1 pm4.24 624 . 2
21bicomi 193 1
Colors of variables: wff setvar class
Syntax hints:   wb 176   wa 358
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 177  df-an 360
This theorem is referenced by:  anidmdbi  627  anandi  801  anandir  802  nannot  1293  truantru  1336  falanfal  1339  nic-axALT  1439  sbnf2  2108  2eu4  2287  elcomplg  3219  inidm  3465  ncfinlower  4484  nnpw1ex  4485  nnpweq  4524  phialllem1  4617  xp11  5057  fununi  5161
  Copyright terms: Public domain W3C validator