NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  elcomplg Unicode version

Theorem elcomplg 3219
Description: Membership in class complement. (Contributed by SF, 10-Jan-2015.)
Assertion
Ref Expression
elcomplg

Proof of Theorem elcomplg
StepHypRef Expression
1 df-compl 3213 . . 3 &ncap
21eleq2i 2417 . 2 &ncap
3 elning 3218 . . 3 &ncap
4 df-nan 1288 . . . 4
5 anidm 625 . . . 4
64, 5xchbinx 301 . . 3
73, 6syl6bb 252 . 2 &ncap
82, 7syl5bb 248 1
Colors of variables: wff setvar class
Syntax hints:   wn 3   wi 4   wb 176   wa 358   wnan 1287   wcel 1710   &ncap cnin 3205   ∼ ccompl 3206
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-nan 1288  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-clab 2340  df-cleq 2346  df-clel 2349  df-nfc 2479  df-v 2862  df-nin 3212  df-compl 3213
This theorem is referenced by:  elin  3220  elun  3221  eldif  3222  elcompl  3226  nnadjoinpw  4522  nmembers1lem3  6271
  Copyright terms: Public domain W3C validator