NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  axtyplowerprim Unicode version

Theorem axtyplowerprim 4095
Description: ax-typlower 4087 presented without any set theory definitions. (Contributed by SF, 25-Mar-2015.)
Assertion
Ref Expression
axtyplowerprim
Distinct variable groups:   ,,   ,,   ,   ,,,   ,   ,   ,,   ,   ,,,

Proof of Theorem axtyplowerprim
StepHypRef Expression
1 ax-typlower 4087 . 2
2 df-clel 2349 . . . . . . 7
3 axprimlem2 4090 . . . . . . . . . 10
4 axprimlem1 4089 . . . . . . . . . . . . . . . 16
54orbi2i 505 . . . . . . . . . . . . . . 15
65bibi2i 304 . . . . . . . . . . . . . 14
76albii 1566 . . . . . . . . . . . . 13
87orbi2i 505 . . . . . . . . . . . 12
98bibi2i 304 . . . . . . . . . . 11
109albii 1566 . . . . . . . . . 10
113, 10bitri 240 . . . . . . . . 9
1211anbi1i 676 . . . . . . . 8
1312exbii 1582 . . . . . . 7
142, 13bitri 240 . . . . . 6
1514albii 1566 . . . . 5
1615bibi2i 304 . . . 4
1716albii 1566 . . 3
1817exbii 1582 . 2
191, 18mpbi 199 1
Colors of variables: wff setvar class
Syntax hints:   wb 176   wo 357   wa 358  wal 1540  wex 1541   wceq 1642   wcel 1710  csn 3738  copk 4058
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334  ax-typlower 4087
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-nan 1288  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-clab 2340  df-cleq 2346  df-clel 2349  df-nfc 2479  df-v 2862  df-nin 3212  df-compl 3213  df-un 3215  df-sn 3742  df-pr 3743  df-opk 4059
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator