NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  cbvoprab2 Unicode version

Theorem cbvoprab2 5569
Description: Change the second bound variable in an operation abstraction. (Contributed by Jeff Madsen, 11-Jun-2010.) (Revised by Mario Carneiro, 11-Dec-2016.)
Hypotheses
Ref Expression
cbvoprab2.1  F/
cbvoprab2.2  F/
cbvoprab2.3
Assertion
Ref Expression
cbvoprab2
Distinct variable group:   ,,,
Allowed substitution hints:   (,,,)   (,,,)

Proof of Theorem cbvoprab2
Dummy variable is distinct from all other variables.
StepHypRef Expression
1 nfv 1619 . . . . . . 7  F/
2 cbvoprab2.1 . . . . . . 7  F/
31, 2nfan 1824 . . . . . 6  F/
43nfex 1843 . . . . 5  F/
5 nfv 1619 . . . . . . 7  F/
6 cbvoprab2.2 . . . . . . 7  F/
75, 6nfan 1824 . . . . . 6  F/
87nfex 1843 . . . . 5  F/
9 opeq2 4580 . . . . . . . . 9
109opeq1d 4585 . . . . . . . 8
1110eqeq2d 2364 . . . . . . 7
12 cbvoprab2.3 . . . . . . 7
1311, 12anbi12d 691 . . . . . 6
1413exbidv 1626 . . . . 5
154, 8, 14cbvex 1985 . . . 4
1615exbii 1582 . . 3
1716abbii 2466 . 2
18 df-oprab 5529 . 2
19 df-oprab 5529 . 2
2017, 18, 193eqtr4i 2383 1
Colors of variables: wff setvar class
Syntax hints:   wi 4   wb 176   wa 358  wex 1541   F/wnf 1544   wceq 1642  cab 2339  cop 4562  coprab 5528
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334  ax-nin 4079  ax-xp 4080  ax-cnv 4081  ax-1c 4082  ax-sset 4083  ax-si 4084  ax-ins2 4085  ax-ins3 4086  ax-typlower 4087  ax-sn 4088
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-nan 1288  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-clab 2340  df-cleq 2346  df-clel 2349  df-nfc 2479  df-ne 2519  df-ral 2620  df-rex 2621  df-v 2862  df-sbc 3048  df-nin 3212  df-compl 3213  df-in 3214  df-un 3215  df-dif 3216  df-symdif 3217  df-ss 3260  df-nul 3552  df-if 3664  df-pw 3725  df-sn 3742  df-pr 3743  df-uni 3893  df-int 3928  df-opk 4059  df-1c 4137  df-pw1 4138  df-uni1 4139  df-xpk 4186  df-cnvk 4187  df-ins2k 4188  df-ins3k 4189  df-imak 4190  df-cok 4191  df-p6 4192  df-sik 4193  df-ssetk 4194  df-imagek 4195  df-idk 4196  df-addc 4379  df-nnc 4380  df-phi 4566  df-op 4567  df-oprab 5529
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator