New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > cbvoprab2 | GIF version |
Description: Change the second bound variable in an operation abstraction. (Contributed by Jeff Madsen, 11-Jun-2010.) (Revised by Mario Carneiro, 11-Dec-2016.) |
Ref | Expression |
---|---|
cbvoprab2.1 | ⊢ Ⅎwφ |
cbvoprab2.2 | ⊢ Ⅎyψ |
cbvoprab2.3 | ⊢ (y = w → (φ ↔ ψ)) |
Ref | Expression |
---|---|
cbvoprab2 | ⊢ {〈〈x, y〉, z〉 ∣ φ} = {〈〈x, w〉, z〉 ∣ ψ} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfv 1619 | . . . . . . 7 ⊢ Ⅎw v = 〈〈x, y〉, z〉 | |
2 | cbvoprab2.1 | . . . . . . 7 ⊢ Ⅎwφ | |
3 | 1, 2 | nfan 1824 | . . . . . 6 ⊢ Ⅎw(v = 〈〈x, y〉, z〉 ∧ φ) |
4 | 3 | nfex 1843 | . . . . 5 ⊢ Ⅎw∃z(v = 〈〈x, y〉, z〉 ∧ φ) |
5 | nfv 1619 | . . . . . . 7 ⊢ Ⅎy v = 〈〈x, w〉, z〉 | |
6 | cbvoprab2.2 | . . . . . . 7 ⊢ Ⅎyψ | |
7 | 5, 6 | nfan 1824 | . . . . . 6 ⊢ Ⅎy(v = 〈〈x, w〉, z〉 ∧ ψ) |
8 | 7 | nfex 1843 | . . . . 5 ⊢ Ⅎy∃z(v = 〈〈x, w〉, z〉 ∧ ψ) |
9 | opeq2 4580 | . . . . . . . . 9 ⊢ (y = w → 〈x, y〉 = 〈x, w〉) | |
10 | 9 | opeq1d 4585 | . . . . . . . 8 ⊢ (y = w → 〈〈x, y〉, z〉 = 〈〈x, w〉, z〉) |
11 | 10 | eqeq2d 2364 | . . . . . . 7 ⊢ (y = w → (v = 〈〈x, y〉, z〉 ↔ v = 〈〈x, w〉, z〉)) |
12 | cbvoprab2.3 | . . . . . . 7 ⊢ (y = w → (φ ↔ ψ)) | |
13 | 11, 12 | anbi12d 691 | . . . . . 6 ⊢ (y = w → ((v = 〈〈x, y〉, z〉 ∧ φ) ↔ (v = 〈〈x, w〉, z〉 ∧ ψ))) |
14 | 13 | exbidv 1626 | . . . . 5 ⊢ (y = w → (∃z(v = 〈〈x, y〉, z〉 ∧ φ) ↔ ∃z(v = 〈〈x, w〉, z〉 ∧ ψ))) |
15 | 4, 8, 14 | cbvex 1985 | . . . 4 ⊢ (∃y∃z(v = 〈〈x, y〉, z〉 ∧ φ) ↔ ∃w∃z(v = 〈〈x, w〉, z〉 ∧ ψ)) |
16 | 15 | exbii 1582 | . . 3 ⊢ (∃x∃y∃z(v = 〈〈x, y〉, z〉 ∧ φ) ↔ ∃x∃w∃z(v = 〈〈x, w〉, z〉 ∧ ψ)) |
17 | 16 | abbii 2466 | . 2 ⊢ {v ∣ ∃x∃y∃z(v = 〈〈x, y〉, z〉 ∧ φ)} = {v ∣ ∃x∃w∃z(v = 〈〈x, w〉, z〉 ∧ ψ)} |
18 | df-oprab 5529 | . 2 ⊢ {〈〈x, y〉, z〉 ∣ φ} = {v ∣ ∃x∃y∃z(v = 〈〈x, y〉, z〉 ∧ φ)} | |
19 | df-oprab 5529 | . 2 ⊢ {〈〈x, w〉, z〉 ∣ ψ} = {v ∣ ∃x∃w∃z(v = 〈〈x, w〉, z〉 ∧ ψ)} | |
20 | 17, 18, 19 | 3eqtr4i 2383 | 1 ⊢ {〈〈x, y〉, z〉 ∣ φ} = {〈〈x, w〉, z〉 ∣ ψ} |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 176 ∧ wa 358 ∃wex 1541 Ⅎwnf 1544 = wceq 1642 {cab 2339 〈cop 4562 {coprab 5528 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 ax-nin 4079 ax-xp 4080 ax-cnv 4081 ax-1c 4082 ax-sset 4083 ax-si 4084 ax-ins2 4085 ax-ins3 4086 ax-typlower 4087 ax-sn 4088 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-3an 936 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-ne 2519 df-ral 2620 df-rex 2621 df-v 2862 df-sbc 3048 df-nin 3212 df-compl 3213 df-in 3214 df-un 3215 df-dif 3216 df-symdif 3217 df-ss 3260 df-nul 3552 df-if 3664 df-pw 3725 df-sn 3742 df-pr 3743 df-uni 3893 df-int 3928 df-opk 4059 df-1c 4137 df-pw1 4138 df-uni1 4139 df-xpk 4186 df-cnvk 4187 df-ins2k 4188 df-ins3k 4189 df-imak 4190 df-cok 4191 df-p6 4192 df-sik 4193 df-ssetk 4194 df-imagek 4195 df-idk 4196 df-addc 4379 df-nnc 4380 df-phi 4566 df-op 4567 df-oprab 5529 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |