New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > opeq2 | Unicode version |
Description: Equality theorem for ordered pairs. (Contributed by SF, 2-Jan-2015.) |
Ref | Expression |
---|---|
opeq2 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | imakeq2 4226 | . . 3 ∼ Ins2k Sk Ins3k kImagekImagek Ins3k ∼ Ins3k Sk Ins2k Sk k1 1 1c Ins2k Ins2k Sk Ins2k Ins3k Sk Ins3k SIk SIk Sk k1 1 1 1 1ck1 1 1c Nn k k ∼ Nn k k Sk 0c k k1 1 1ck ∼ Ins2k Sk Ins3k kImagekImagek Ins3k ∼ Ins3k Sk Ins2k Sk k1 1 1c Ins2k Ins2k Sk Ins2k Ins3k Sk Ins3k SIk SIk Sk k1 1 1 1 1ck1 1 1c Nn k k ∼ Nn k k Sk 0c k k1 1 1ck | |
2 | 1 | uneq2d 3419 | . 2 ImagekImagek Ins3k ∼ Ins3k Sk Ins2k Sk k1 1 1c Ins2k Ins2k Sk Ins2k Ins3k Sk Ins3k SIk SIk Sk k1 1 1 1 1ck1 1 1c Nn k k ∼ Nn k k ∼ Ins2k Sk Ins3k kImagekImagek Ins3k ∼ Ins3k Sk Ins2k Sk k1 1 1c Ins2k Ins2k Sk Ins2k Ins3k Sk Ins3k SIk SIk Sk k1 1 1 1 1ck1 1 1c Nn k k ∼ Nn k k Sk 0c k k1 1 1ck ImagekImagek Ins3k ∼ Ins3k Sk Ins2k Sk k1 1 1c Ins2k Ins2k Sk Ins2k Ins3k Sk Ins3k SIk SIk Sk k1 1 1 1 1ck1 1 1c Nn k k ∼ Nn k k ∼ Ins2k Sk Ins3k kImagekImagek Ins3k ∼ Ins3k Sk Ins2k Sk k1 1 1c Ins2k Ins2k Sk Ins2k Ins3k Sk Ins3k SIk SIk Sk k1 1 1 1 1ck1 1 1c Nn k k ∼ Nn k k Sk 0c k k1 1 1ck |
3 | dfop2 4576 | . 2 ImagekImagek Ins3k ∼ Ins3k Sk Ins2k Sk k1 1 1c Ins2k Ins2k Sk Ins2k Ins3k Sk Ins3k SIk SIk Sk k1 1 1 1 1ck1 1 1c Nn k k ∼ Nn k k ∼ Ins2k Sk Ins3k kImagekImagek Ins3k ∼ Ins3k Sk Ins2k Sk k1 1 1c Ins2k Ins2k Sk Ins2k Ins3k Sk Ins3k SIk SIk Sk k1 1 1 1 1ck1 1 1c Nn k k ∼ Nn k k Sk 0c k k1 1 1ck | |
4 | dfop2 4576 | . 2 ImagekImagek Ins3k ∼ Ins3k Sk Ins2k Sk k1 1 1c Ins2k Ins2k Sk Ins2k Ins3k Sk Ins3k SIk SIk Sk k1 1 1 1 1ck1 1 1c Nn k k ∼ Nn k k ∼ Ins2k Sk Ins3k kImagekImagek Ins3k ∼ Ins3k Sk Ins2k Sk k1 1 1c Ins2k Ins2k Sk Ins2k Ins3k Sk Ins3k SIk SIk Sk k1 1 1 1 1ck1 1 1c Nn k k ∼ Nn k k Sk 0c k k1 1 1ck | |
5 | 2, 3, 4 | 3eqtr4g 2410 | 1 |
Colors of variables: wff setvar class |
Syntax hints: wi 4 wceq 1642 cvv 2860 ∼ ccompl 3206 cdif 3207 cun 3208 cin 3209 csymdif 3210 csn 3738 1cc1c 4135 1 cpw1 4136 k cxpk 4175 kccnvk 4176 Ins2k cins2k 4177 Ins3k cins3k 4178 kcimak 4180 k ccomk 4181 SIk csik 4182 Imagekcimagek 4183 Sk cssetk 4184 k cidk 4185 Nn cnnc 4374 0cc0c 4375 cop 4562 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 ax-nin 4079 ax-xp 4080 ax-cnv 4081 ax-1c 4082 ax-sset 4083 ax-si 4084 ax-ins2 4085 ax-ins3 4086 ax-typlower 4087 ax-sn 4088 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-3an 936 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-ne 2519 df-ral 2620 df-rex 2621 df-v 2862 df-sbc 3048 df-nin 3212 df-compl 3213 df-in 3214 df-un 3215 df-dif 3216 df-symdif 3217 df-ss 3260 df-nul 3552 df-if 3664 df-pw 3725 df-sn 3742 df-pr 3743 df-uni 3893 df-int 3928 df-opk 4059 df-1c 4137 df-pw1 4138 df-uni1 4139 df-xpk 4186 df-cnvk 4187 df-ins2k 4188 df-ins3k 4189 df-imak 4190 df-cok 4191 df-p6 4192 df-sik 4193 df-ssetk 4194 df-imagek 4195 df-idk 4196 df-addc 4379 df-nnc 4380 df-phi 4566 df-op 4567 |
This theorem is referenced by: opeq12 4581 opeq2i 4583 opeq2d 4586 eqvinop 4607 cbvopab2 4634 cbvopab2v 4637 breq2 4644 opelopabsb 4698 br1stg 4731 elswap 4741 dfima2 4746 dfco1 4749 dfsi2 4752 dfid3 4769 ssrel 4845 br2nd 4860 brswap2 4861 opabid2 4862 opeldm 4911 iss 5001 dmsnopg 5067 elxp4 5109 dfxp2 5114 nfunv 5139 fnunsn 5191 iunfopab 5205 f1osng 5324 fsn 5433 fsng 5434 fvsng 5447 xpnedisj 5514 oveq2 5532 cbvoprab2 5569 oprabid2 5647 trtxp 5782 brtxp 5784 oqelins4 5795 txpcofun 5804 addcfnex 5825 qrpprod 5837 fundmen 6044 xpassen 6058 addccan2nclem1 6264 freceq12 6312 |
Copyright terms: Public domain | W3C validator |