New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > cbvralcsf | Unicode version |
Description: A more general version of cbvralf 2830 that doesn't require and to be distinct from or . Changes bound variables using implicit substitution. (Contributed by Andrew Salmon, 13-Jul-2011.) |
Ref | Expression |
---|---|
cbvralcsf.1 | |
cbvralcsf.2 | |
cbvralcsf.3 | |
cbvralcsf.4 | |
cbvralcsf.5 | |
cbvralcsf.6 |
Ref | Expression |
---|---|
cbvralcsf |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfv 1619 | . . . 4 | |
2 | nfcsb1v 3169 | . . . . . 6 | |
3 | 2 | nfcri 2484 | . . . . 5 |
4 | nfsbc1v 3066 | . . . . 5 | |
5 | 3, 4 | nfim 1813 | . . . 4 |
6 | id 19 | . . . . . 6 | |
7 | csbeq1a 3145 | . . . . . 6 | |
8 | 6, 7 | eleq12d 2421 | . . . . 5 |
9 | sbceq1a 3057 | . . . . 5 | |
10 | 8, 9 | imbi12d 311 | . . . 4 |
11 | 1, 5, 10 | cbval 1984 | . . 3 |
12 | nfcv 2490 | . . . . . . 7 | |
13 | cbvralcsf.1 | . . . . . . 7 | |
14 | 12, 13 | nfcsb 3171 | . . . . . 6 |
15 | 14 | nfcri 2484 | . . . . 5 |
16 | cbvralcsf.3 | . . . . . 6 | |
17 | 12, 16 | nfsbc 3068 | . . . . 5 |
18 | 15, 17 | nfim 1813 | . . . 4 |
19 | nfv 1619 | . . . 4 | |
20 | id 19 | . . . . . 6 | |
21 | csbeq1 3140 | . . . . . . 7 | |
22 | df-csb 3138 | . . . . . . . 8 | |
23 | cbvralcsf.2 | . . . . . . . . . . . 12 | |
24 | 23 | nfcri 2484 | . . . . . . . . . . 11 |
25 | cbvralcsf.5 | . . . . . . . . . . . 12 | |
26 | 25 | eleq2d 2420 | . . . . . . . . . . 11 |
27 | 24, 26 | sbie 2038 | . . . . . . . . . 10 |
28 | sbsbc 3051 | . . . . . . . . . 10 | |
29 | 27, 28 | bitr3i 242 | . . . . . . . . 9 |
30 | 29 | abbi2i 2465 | . . . . . . . 8 |
31 | 22, 30 | eqtr4i 2376 | . . . . . . 7 |
32 | 21, 31 | syl6eq 2401 | . . . . . 6 |
33 | 20, 32 | eleq12d 2421 | . . . . 5 |
34 | dfsbcq 3049 | . . . . . 6 | |
35 | sbsbc 3051 | . . . . . . 7 | |
36 | cbvralcsf.4 | . . . . . . . 8 | |
37 | cbvralcsf.6 | . . . . . . . 8 | |
38 | 36, 37 | sbie 2038 | . . . . . . 7 |
39 | 35, 38 | bitr3i 242 | . . . . . 6 |
40 | 34, 39 | syl6bb 252 | . . . . 5 |
41 | 33, 40 | imbi12d 311 | . . . 4 |
42 | 18, 19, 41 | cbval 1984 | . . 3 |
43 | 11, 42 | bitri 240 | . 2 |
44 | df-ral 2620 | . 2 | |
45 | df-ral 2620 | . 2 | |
46 | 43, 44, 45 | 3bitr4i 268 | 1 |
Colors of variables: wff setvar class |
Syntax hints: wi 4 wb 176 wal 1540 wnf 1544 wceq 1642 wsb 1648 wcel 1710 cab 2339 wnfc 2477 wral 2615 wsbc 3047 csb 3137 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-ral 2620 df-sbc 3048 df-csb 3138 |
This theorem is referenced by: cbvrexcsf 3200 cbvralv2 3203 |
Copyright terms: Public domain | W3C validator |