New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > dfiin2g | Unicode version |
Description: Alternate definition of indexed intersection when is a set. (Contributed by Jeff Hankins, 27-Aug-2009.) |
Ref | Expression |
---|---|
dfiin2g |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ral 2620 | . . . 4 | |
2 | df-ral 2620 | . . . . . 6 | |
3 | eleq2 2414 | . . . . . . . . . . . . 13 | |
4 | 3 | biimprcd 216 | . . . . . . . . . . . 12 |
5 | 4 | alrimiv 1631 | . . . . . . . . . . 11 |
6 | eqid 2353 | . . . . . . . . . . . 12 | |
7 | eqeq1 2359 | . . . . . . . . . . . . . 14 | |
8 | 7, 3 | imbi12d 311 | . . . . . . . . . . . . 13 |
9 | 8 | spcgv 2940 | . . . . . . . . . . . 12 |
10 | 6, 9 | mpii 39 | . . . . . . . . . . 11 |
11 | 5, 10 | impbid2 195 | . . . . . . . . . 10 |
12 | 11 | imim2i 13 | . . . . . . . . 9 |
13 | 12 | pm5.74d 238 | . . . . . . . 8 |
14 | 13 | alimi 1559 | . . . . . . 7 |
15 | albi 1564 | . . . . . . 7 | |
16 | 14, 15 | syl 15 | . . . . . 6 |
17 | 2, 16 | sylbi 187 | . . . . 5 |
18 | df-ral 2620 | . . . . . . . 8 | |
19 | 18 | albii 1566 | . . . . . . 7 |
20 | alcom 1737 | . . . . . . 7 | |
21 | 19, 20 | bitr4i 243 | . . . . . 6 |
22 | r19.23v 2731 | . . . . . . . 8 | |
23 | vex 2863 | . . . . . . . . . 10 | |
24 | eqeq1 2359 | . . . . . . . . . . 11 | |
25 | 24 | rexbidv 2636 | . . . . . . . . . 10 |
26 | 23, 25 | elab 2986 | . . . . . . . . 9 |
27 | 26 | imbi1i 315 | . . . . . . . 8 |
28 | 22, 27 | bitr4i 243 | . . . . . . 7 |
29 | 28 | albii 1566 | . . . . . 6 |
30 | 19.21v 1890 | . . . . . . 7 | |
31 | 30 | albii 1566 | . . . . . 6 |
32 | 21, 29, 31 | 3bitr3ri 267 | . . . . 5 |
33 | 17, 32 | syl6bb 252 | . . . 4 |
34 | 1, 33 | syl5bb 248 | . . 3 |
35 | 34 | abbidv 2468 | . 2 |
36 | df-iin 3973 | . 2 | |
37 | df-int 3928 | . 2 | |
38 | 35, 36, 37 | 3eqtr4g 2410 | 1 |
Colors of variables: wff setvar class |
Syntax hints: wi 4 wb 176 wal 1540 wceq 1642 wcel 1710 cab 2339 wral 2615 wrex 2616 cint 3927 ciin 3971 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-ral 2620 df-rex 2621 df-v 2862 df-int 3928 df-iin 3973 |
This theorem is referenced by: dfiin2 4003 |
Copyright terms: Public domain | W3C validator |