New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > dmpprod | Unicode version |
Description: The domain of a parallel product. (Contributed by SF, 24-Feb-2015.) |
Ref | Expression |
---|---|
dmpprod | PProd |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vex 2863 | . . . . . . 7 | |
2 | vex 2863 | . . . . . . 7 | |
3 | 1, 2 | opex 4589 | . . . . . 6 |
4 | 3 | isseti 2866 | . . . . 5 |
5 | 19.41v 1901 | . . . . 5 | |
6 | 4, 5 | mpbiran 884 | . . . 4 |
7 | 6 | 2exbii 1583 | . . 3 |
8 | df-br 4641 | . . . 4 PProd PProd | |
9 | eldm 4899 | . . . 4 PProd PProd | |
10 | brpprod 5840 | . . . . . . 7 PProd | |
11 | 19.42vv 1907 | . . . . . . . . 9 | |
12 | 3anass 938 | . . . . . . . . . . 11 | |
13 | eqcom 2355 | . . . . . . . . . . . . 13 | |
14 | opth 4603 | . . . . . . . . . . . . 13 | |
15 | 13, 14 | bitri 240 | . . . . . . . . . . . 12 |
16 | 15 | anbi1i 676 | . . . . . . . . . . 11 |
17 | 12, 16 | bitri 240 | . . . . . . . . . 10 |
18 | 17 | 2exbii 1583 | . . . . . . . . 9 |
19 | df-3an 936 | . . . . . . . . 9 | |
20 | 11, 18, 19 | 3bitr4i 268 | . . . . . . . 8 |
21 | 20 | 2exbii 1583 | . . . . . . 7 |
22 | vex 2863 | . . . . . . . 8 | |
23 | vex 2863 | . . . . . . . 8 | |
24 | breq1 4643 | . . . . . . . . . . 11 | |
25 | 24 | anbi1d 685 | . . . . . . . . . 10 |
26 | 25 | anbi2d 684 | . . . . . . . . 9 |
27 | 26 | 2exbidv 1628 | . . . . . . . 8 |
28 | breq1 4643 | . . . . . . . . . . 11 | |
29 | 28 | anbi2d 684 | . . . . . . . . . 10 |
30 | 29 | anbi2d 684 | . . . . . . . . 9 |
31 | 30 | 2exbidv 1628 | . . . . . . . 8 |
32 | 22, 23, 27, 31 | ceqsex2v 2897 | . . . . . . 7 |
33 | 10, 21, 32 | 3bitri 262 | . . . . . 6 PProd |
34 | 33 | exbii 1582 | . . . . 5 PProd |
35 | exrot3 1744 | . . . . 5 | |
36 | 34, 35 | bitri 240 | . . . 4 PProd |
37 | 8, 9, 36 | 3bitri 262 | . . 3 PProd |
38 | eldm 4899 | . . . . 5 | |
39 | eldm 4899 | . . . . 5 | |
40 | 38, 39 | anbi12i 678 | . . . 4 |
41 | brxp 4813 | . . . 4 | |
42 | eeanv 1913 | . . . 4 | |
43 | 40, 41, 42 | 3bitr4i 268 | . . 3 |
44 | 7, 37, 43 | 3bitr4i 268 | . 2 PProd |
45 | 44 | eqbrriv 4852 | 1 PProd |
Colors of variables: wff setvar class |
Syntax hints: wa 358 w3a 934 wex 1541 wceq 1642 wcel 1710 cop 4562 class class class wbr 4640 cxp 4771 cdm 4773 PProd cpprod 5738 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-13 1712 ax-14 1714 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 ax-nin 4079 ax-xp 4080 ax-cnv 4081 ax-1c 4082 ax-sset 4083 ax-si 4084 ax-ins2 4085 ax-ins3 4086 ax-typlower 4087 ax-sn 4088 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-3or 935 df-3an 936 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-eu 2208 df-mo 2209 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-ne 2519 df-ral 2620 df-rex 2621 df-reu 2622 df-rmo 2623 df-rab 2624 df-v 2862 df-sbc 3048 df-nin 3212 df-compl 3213 df-in 3214 df-un 3215 df-dif 3216 df-symdif 3217 df-ss 3260 df-pss 3262 df-nul 3552 df-if 3664 df-pw 3725 df-sn 3742 df-pr 3743 df-uni 3893 df-int 3928 df-opk 4059 df-1c 4137 df-pw1 4138 df-uni1 4139 df-xpk 4186 df-cnvk 4187 df-ins2k 4188 df-ins3k 4189 df-imak 4190 df-cok 4191 df-p6 4192 df-sik 4193 df-ssetk 4194 df-imagek 4195 df-idk 4196 df-iota 4340 df-0c 4378 df-addc 4379 df-nnc 4380 df-fin 4381 df-lefin 4441 df-ltfin 4442 df-ncfin 4443 df-tfin 4444 df-evenfin 4445 df-oddfin 4446 df-sfin 4447 df-spfin 4448 df-phi 4566 df-op 4567 df-proj1 4568 df-proj2 4569 df-opab 4624 df-br 4641 df-1st 4724 df-co 4727 df-ima 4728 df-xp 4785 df-cnv 4786 df-rn 4787 df-dm 4788 df-2nd 4798 df-txp 5737 df-pprod 5739 |
This theorem is referenced by: rnpprod 5843 fnpprod 5844 |
Copyright terms: Public domain | W3C validator |