New Foundations Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  NFE Home  >  Th. List  >  dmpprod Unicode version

Theorem dmpprod 5840
 Description: The domain of a parallel product. (Contributed by SF, 24-Feb-2015.)
Assertion
Ref Expression
dmpprod PProd

Proof of Theorem dmpprod
Dummy variables are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 vex 2862 . . . . . . 7
2 vex 2862 . . . . . . 7
31, 2opex 4588 . . . . . 6
43isseti 2865 . . . . 5
5 19.41v 1901 . . . . 5
64, 5mpbiran 884 . . . 4
762exbii 1583 . . 3
8 df-br 4640 . . . 4 PProd PProd
9 eldm 4898 . . . 4 PProd PProd
10 brpprod 5839 . . . . . . 7 PProd
11 19.42vv 1907 . . . . . . . . 9
12 3anass 938 . . . . . . . . . . 11
13 eqcom 2355 . . . . . . . . . . . . 13
14 opth 4602 . . . . . . . . . . . . 13
1513, 14bitri 240 . . . . . . . . . . . 12
1615anbi1i 676 . . . . . . . . . . 11
1712, 16bitri 240 . . . . . . . . . 10
18172exbii 1583 . . . . . . . . 9
19 df-3an 936 . . . . . . . . 9
2011, 18, 193bitr4i 268 . . . . . . . 8
21202exbii 1583 . . . . . . 7
22 vex 2862 . . . . . . . 8
23 vex 2862 . . . . . . . 8
24 breq1 4642 . . . . . . . . . . 11
2524anbi1d 685 . . . . . . . . . 10
2625anbi2d 684 . . . . . . . . 9
27262exbidv 1628 . . . . . . . 8
28 breq1 4642 . . . . . . . . . . 11
2928anbi2d 684 . . . . . . . . . 10
3029anbi2d 684 . . . . . . . . 9
31302exbidv 1628 . . . . . . . 8
3222, 23, 27, 31ceqsex2v 2896 . . . . . . 7
3310, 21, 323bitri 262 . . . . . 6 PProd
3433exbii 1582 . . . . 5 PProd
35 exrot3 1744 . . . . 5
3634, 35bitri 240 . . . 4 PProd
378, 9, 363bitri 262 . . 3 PProd
38 eldm 4898 . . . . 5
39 eldm 4898 . . . . 5
4038, 39anbi12i 678 . . . 4
41 brxp 4812 . . . 4
42 eeanv 1913 . . . 4
4340, 41, 423bitr4i 268 . . 3
447, 37, 433bitr4i 268 . 2 PProd
4544eqbrriv 4851 1 PProd
 Colors of variables: wff setvar class Syntax hints:   wa 358   w3a 934  wex 1541   wceq 1642   wcel 1710  cop 4561   class class class wbr 4639   cxp 4770   cdm 4772   PProd cpprod 5737 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-13 1712  ax-14 1714  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334  ax-nin 4078  ax-xp 4079  ax-cnv 4080  ax-1c 4081  ax-sset 4082  ax-si 4083  ax-ins2 4084  ax-ins3 4085  ax-typlower 4086  ax-sn 4087 This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-nan 1288  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-eu 2208  df-mo 2209  df-clab 2340  df-cleq 2346  df-clel 2349  df-nfc 2478  df-ne 2518  df-ral 2619  df-rex 2620  df-reu 2621  df-rmo 2622  df-rab 2623  df-v 2861  df-sbc 3047  df-nin 3211  df-compl 3212  df-in 3213  df-un 3214  df-dif 3215  df-symdif 3216  df-ss 3259  df-pss 3261  df-nul 3551  df-if 3663  df-pw 3724  df-sn 3741  df-pr 3742  df-uni 3892  df-int 3927  df-opk 4058  df-1c 4136  df-pw1 4137  df-uni1 4138  df-xpk 4185  df-cnvk 4186  df-ins2k 4187  df-ins3k 4188  df-imak 4189  df-cok 4190  df-p6 4191  df-sik 4192  df-ssetk 4193  df-imagek 4194  df-idk 4195  df-iota 4339  df-0c 4377  df-addc 4378  df-nnc 4379  df-fin 4380  df-lefin 4440  df-ltfin 4441  df-ncfin 4442  df-tfin 4443  df-evenfin 4444  df-oddfin 4445  df-sfin 4446  df-spfin 4447  df-phi 4565  df-op 4566  df-proj1 4567  df-proj2 4568  df-opab 4623  df-br 4640  df-1st 4723  df-co 4726  df-ima 4727  df-xp 4784  df-cnv 4785  df-rn 4786  df-dm 4787  df-2nd 4797  df-txp 5736  df-pprod 5738 This theorem is referenced by:  rnpprod  5842  fnpprod  5843
 Copyright terms: Public domain W3C validator