![]() |
New Foundations Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > NFE Home > Th. List > elpr | GIF version |
Description: A member of an unordered pair of classes is one or the other of them. Exercise 1 of [TakeutiZaring] p. 15. (Contributed by NM, 13-Sep-1995.) |
Ref | Expression |
---|---|
elpr.1 | ⊢ A ∈ V |
Ref | Expression |
---|---|
elpr | ⊢ (A ∈ {B, C} ↔ (A = B ∨ A = C)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elpr.1 | . 2 ⊢ A ∈ V | |
2 | elprg 3750 | . 2 ⊢ (A ∈ V → (A ∈ {B, C} ↔ (A = B ∨ A = C))) | |
3 | 1, 2 | ax-mp 8 | 1 ⊢ (A ∈ {B, C} ↔ (A = B ∨ A = C)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 176 ∨ wo 357 = wceq 1642 ∈ wcel 1710 Vcvv 2859 {cpr 3738 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-3 7 ax-mp 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2478 df-v 2861 df-nin 3211 df-compl 3212 df-un 3214 df-sn 3741 df-pr 3742 |
This theorem is referenced by: difprsnss 3846 pwpr 3883 pwtp 3884 unipr 3905 intpr 3959 axprimlem2 4089 preqr1 4124 preq12b 4127 enprmaplem3 6078 enprmaplem5 6080 2p1e3c 6156 |
Copyright terms: Public domain | W3C validator |