NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  elpr GIF version

Theorem elpr 3752
Description: A member of an unordered pair of classes is one or the other of them. Exercise 1 of [TakeutiZaring] p. 15. (Contributed by NM, 13-Sep-1995.)
Hypothesis
Ref Expression
elpr.1 A V
Assertion
Ref Expression
elpr (A {B, C} ↔ (A = B A = C))

Proof of Theorem elpr
StepHypRef Expression
1 elpr.1 . 2 A V
2 elprg 3751 . 2 (A V → (A {B, C} ↔ (A = B A = C)))
31, 2ax-mp 5 1 (A {B, C} ↔ (A = B A = C))
Colors of variables: wff setvar class
Syntax hints:  wb 176   wo 357   = wceq 1642   wcel 1710  Vcvv 2860  {cpr 3739
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-nan 1288  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-clab 2340  df-cleq 2346  df-clel 2349  df-nfc 2479  df-v 2862  df-nin 3212  df-compl 3213  df-un 3215  df-sn 3742  df-pr 3743
This theorem is referenced by:  difprsnss  3847  pwpr  3884  pwtp  3885  unipr  3906  intpr  3960  axprimlem2  4090  preqr1  4125  preq12b  4128  enprmaplem3  6079  enprmaplem5  6081  2p1e3c  6157
  Copyright terms: Public domain W3C validator