New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > dfint3 | Unicode version |
Description: Alternate definition of class intersection for the existence proof. (Contributed by SF, 14-Jan-2015.) |
Ref | Expression |
---|---|
dfint3 | ∼ ⋃1k ∼ Sk k |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vex 2862 | . . . . . . 7 | |
2 | 1 | eluni1 4173 | . . . . . 6 ⋃1k ∼ Sk k k ∼ Sk k |
3 | snex 4111 | . . . . . . 7 | |
4 | 3 | elimak 4259 | . . . . . 6 k ∼ Sk k k ∼ Sk |
5 | 2, 4 | bitri 240 | . . . . 5 ⋃1k ∼ Sk k k ∼ Sk |
6 | vex 2862 | . . . . . . . 8 | |
7 | 6, 3 | opkelcnvk 4250 | . . . . . . 7 k ∼ Sk ∼ Sk |
8 | opkex 4113 | . . . . . . . 8 | |
9 | 8 | elcompl 3225 | . . . . . . 7 ∼ Sk Sk |
10 | 1, 6 | elssetk 4270 | . . . . . . . 8 Sk |
11 | 10 | notbii 287 | . . . . . . 7 Sk |
12 | 7, 9, 11 | 3bitri 262 | . . . . . 6 k ∼ Sk |
13 | 12 | rexbii 2639 | . . . . 5 k ∼ Sk |
14 | rexnal 2625 | . . . . 5 | |
15 | 5, 13, 14 | 3bitri 262 | . . . 4 ⋃1k ∼ Sk k |
16 | 15 | con2bii 322 | . . 3 ⋃1k ∼ Sk k |
17 | 1 | elint2 3933 | . . 3 |
18 | 1 | elcompl 3225 | . . 3 ∼ ⋃1k ∼ Sk k ⋃1k ∼ Sk k |
19 | 16, 17, 18 | 3bitr4i 268 | . 2 ∼ ⋃1k ∼ Sk k |
20 | 19 | eqriv 2350 | 1 ∼ ⋃1k ∼ Sk k |
Colors of variables: wff setvar class |
Syntax hints: wn 3 wceq 1642 wcel 1710 wral 2614 wrex 2615 ∼ ccompl 3205 csn 3737 cint 3926 copk 4057 ⋃1cuni1 4133 kccnvk 4175 kcimak 4179 Sk cssetk 4183 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 ax-nin 4078 ax-sn 4087 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-3an 936 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2478 df-ne 2518 df-ral 2619 df-rex 2620 df-v 2861 df-nin 3211 df-compl 3212 df-in 3213 df-un 3214 df-dif 3215 df-ss 3259 df-nul 3551 df-sn 3741 df-pr 3742 df-uni 3892 df-int 3927 df-opk 4058 df-1c 4136 df-uni1 4138 df-cnvk 4186 df-imak 4189 df-ssetk 4193 |
This theorem is referenced by: intexg 4319 |
Copyright terms: Public domain | W3C validator |