NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  eluni1 GIF version

Theorem eluni1 4174
Description: Membership in a unit union. (Contributed by SF, 15-Mar-2015.)
Hypothesis
Ref Expression
eluni1.1 A V
Assertion
Ref Expression
eluni1 (A 1B ↔ {A} B)

Proof of Theorem eluni1
StepHypRef Expression
1 eluni1.1 . 2 A V
2 eluni1g 4173 . 2 (A V → (A 1B ↔ {A} B))
31, 2ax-mp 5 1 (A 1B ↔ {A} B)
Colors of variables: wff setvar class
Syntax hints:  wb 176   wcel 1710  Vcvv 2860  {csn 3738  1cuni1 4134
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334  ax-nin 4079  ax-sn 4088
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-nan 1288  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-clab 2340  df-cleq 2346  df-clel 2349  df-nfc 2479  df-ne 2519  df-v 2862  df-nin 3212  df-compl 3213  df-in 3214  df-un 3215  df-dif 3216  df-ss 3260  df-nul 3552  df-sn 3742  df-uni 3893  df-1c 4137  df-uni1 4139
This theorem is referenced by:  dfuni12  4292  dfuni3  4316  dfint3  4319  ncfinraiselem2  4481  nnpweqlem1  4523  sfintfinlem1  4532  tfinnnlem1  4534  vfinspclt  4553  setconslem4  4735  enpw1lem1  6062  nenpw1pwlem1  6085  nmembers1lem1  6269  nchoicelem16  6305  nchoicelem18  6307
  Copyright terms: Public domain W3C validator